本文介绍以下内容:
1. 使用transformers框架做预训练的bert-base模型;
2. 开发平台使用Google的Colab平台,白嫖GPU加速;
3. 使用datasets模块下载IMDB影评数据作为训练数据。
transformers模块简介
transformers框架为Huggingface开源的深度学习框架,支持几乎所有的Transformer架构的预训练模型。使用非常的方便,本文基于此框架,尝试一下预训练模型的使用,简单易用。
本来打算预训练bert-large模型,发现colab上GPU显存不够用,只能使用base版本了。打开colab,并且设置好GPU加速,接下来开始介绍代码。
代码实现
首先安装数据下载模块和transformers包。
pip install datasets pip install transformers
使用datasets下载IMDB数据,返回DatasetDict类型的数据.返回的数据是文本类型,需要进行编码。下面会使用tokenizer进行编码。
from datasets import load_dataset imdb = load_dataset('imdb') print(imdb['train'][:3]) # 打印前3条训练数据
接下来加载tokenizer和模型.从transformers导入AutoModelForSequenceClassification, AutoTokenizer,创建模型和tokenizer。
from transformers import AutoModelForSequenceClassification, AutoTokenizer model_checkpoint = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=2)
对原始数据进行编码,并且分批次(batch)
def preprocessing_func(examples): return tokenizer(examples['text'], padding=True, truncation=True, max_length=300) batch_size = 16 encoded_data = imdb.map(preprocessing_func, batched=True, batch_size=batch_size)
上面得到编码数据,每个批次设置为16.接下来需要指定训练的参数,训练参数的指定使用transformers给出的接口类TrainingArguments,模型的训练可以使用Trainer。
from transformers import Trainer, TrainingArguments args = TrainingArguments( 'out', per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, learning_rate=5e-5, evaluation_strategy='epoch', num_train_epochs=10, load_best_model_at_end=True, ) trainer = Trainer( model, args=args, train_dataset=encoded_data['train'], eval_dataset=encoded_data['test'], tokenizer=tokenizer )
训练模型使用trainer对象的train方法
trainer.train()
评估模型使用trainer对象的evaluate方法
trainer.evaluate()
总结
本文介绍了基于transformers框架实现的bert预训练模型,此框架提供了非常友好的接口,可以方便读者尝试各种预训练模型。同时datasets也提供了很多数据集,便于学习NLP的各种问题。加上Google提供的colab环境,数据下载和预训练模型下载都非常快,建议读者自行去炼丹。本文完整的案例下载
以上就是PyTorch预训练Bert模型的示例的详细内容,更多关于PyTorch预训练Bert模型的资料请关注其它相关文章!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]