帝王谷资源网 Design By www.wdxyy.com
高效处理数据类型方法:
处理数据
In [1]: from random import randint In [2]: data=[randint(-10,10) for _ in range(10)] In [3]: data Out[3]: [-3, -4, 3, 4, 7, -2, -4, 1, 7, -9] #过滤列表中的负数 In [9]: list(filter(lambda x:x>=0,data)) Out[9]: [3, 4, 7, 1, 7] [for x in data if x>=0] # 列表生成式解法 [x for x in data if x>=0] #哪个更快,列表解析更快,远快于迭代 In [15]: %timeit [x for x in data if x>=0] 581 ns ± 23.8 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each) In [16]: %timeit filter(lambda x:x>=0,data) 237 ns ± 4 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each) #得到20个同学的成绩 d={x:randint(60,100)for x in range(1,21)} #字典解析式,iteritems同时迭代字典, # #得到分数大于90的同学 {k:v for k,v in d.items() if v>90} #集合解析 In [35]: {x for x in s if x %3 ==0} Out[35]: {-9, -3, 3} #为元祖中的每个元素命名,提高程序可读性 #元祖存储空间小,访问速度快 #定义常量 NAME = 0 AGE=1 SEX=2 EMAIL=3 #拆包用法,定义类似其他语言的枚举类型,也就是定义数值常量 NAME,AGE,SEX,EMAIL=range(4) #案例 student=('Jim',16,'male','jin@163.com') #name print(student[0]) #age print(student[1]) #通过常量可以优化为 print(student[NAME]) print(student[AGE]) #namedtuple是继承自tuple的子类,namedtuple和tuple比较有更酷的特性 #namedtuple创建一个和tuple类似的对象,而且对象拥有可以访问的属性。这对象更像带有数据属性的类,不过数据属性是只读的。 from collections import namedtuple Student = namedtuple('Student',['name','age','sex','email']) s=Student('Jim',16,'male','jim@163.com') s.name s.age #统计序列中元素出现的频度 from random import randint data=[randint(0,20) for _ in range(30)] #创建字典{0:0,1:0,...} #方法1 c=dict.fromkeys(data,0) In [52]: for x in data: ...: c[x]+=1 #方法2,统计词频 from collections import Counter c2=Counter(data)#讲序列传入Counter的构造器,得到Counter对象是元素频度的字典 #使用most_common统计词频 In [58]: c2.most_common(3) Out[58]: [(10, 4), (20, 3), (8, 3)] #统计英文作文词频 import re txt=open('emmmm.txt').read() #分割后赋给Counter c3=Counter(re.split('\W',txt)) #找到频率最高的10个单词 c3.most_common(10) #内置函数是以c的速度运行,如sorted from random import randint d={x:randint(60,100) for x in 'xyzabc'} #{'a': 91, 'b': 65, 'c': 76, 'x': 85, 'y': 84, 'z': 72} # sorted(d) In [15]: zip(d.values(),d.keys()) Out[15]: <zip at 0x108b34dc8> In [16]: list(zip(d.values(),d.keys())) Out[16]: [(68, 'x'), (70, 'y'), (77, 'z'), (72, 'a'), (65, 'b'), (69, 'c')] #快速找到多个字典中的公共键 #In [1]: from random import randint,sample In [2]: sample('abcdefg',3) Out[2]: ['c', 'a', 'b'] In [4]: sample('abcdefg',randint(3,6)) Out[4]: ['b', 'a', 'd'] In [5]: s1={x:randint(1,4)for x in sample('abcdefg',randint(3,6))} In [9]: s1 Out[9]: {'a': 1, 'b': 2, 'c': 3, 'f': 3, 'g': 3} In [10]: s1={x:randint(1,4)for x in sample('abcdefg',randint(3,6))} In [11]: s1 Out[11]: {'b': 2, 'd': 3, 'g': 3} In [12]: s1 Out[12]: {'b': 2, 'd': 3, 'g': 3} In [13]: s2={x:randint(1,4)for x in sample('abcdefg',randint(3,6))} In [15]: s3={x:randint(1,4)for x in sample('abcdefg',randint(3,6))} #for循环遍历方法,找到s2,s3都有的k In [19]: res=[] In [20]: for k in s1: ...: if k in s2 and k in s3: ...: res.append(k ...: ) ...: ...: In [21]: res Out[21]: ['b'] #通过字典的keys()方法,找到三个字典同样的key In [26]: s1.keys()&s2.keys()&s3.keys() Out[26]: {'b'} #通过map得到一个迭代器对象 #In [27]: map(dict.keys,[s1,s2,s3]) Out[27]: <map at 0x108891b70> In [28]: list(map(dict.keys,[s1,s2,s3])) Out[28]: [dict_keys(['g', 'd', 'b']), dict_keys(['g', 'a', 'c', 'b', 'f']), dict_keys(['d', 'f', 'b', 'c', 'e', 'a'])] #通过reduce取出同样结果 In [30]: from functools import reduce In [31]: reduce(lambda a,b:a&b,map(dict.keys,[s1,s2,s3])) Out[31]: {'b'} #使得 from time import time from random import randint from collections import OrderedDict d=OrderedDict() players = list("ABCDEFGH") start=time() for i in range(8): input() p=players.pop(randint(0,8-i)) end=time() print(i+1,p,end-start) d[p]=(i+1,end-start) print('') print('-'*20) for k in d: print(k,d[k]) #查看用户历史记录功能,标准库collections的deque,双端循环队列,存在内容中,pickle存储到文件 from random import randint from collections import deque N = randint(0,100) history = deque([],5) def guess(K): if K ==N: print('正确') return True if K < N: print('%s is less-than N'%K) else: print("%s is greater-than N"%K) return False while True: line = input("请输入一个数字:") if line.isdigit(): k=int(line) history.append(k) if guess(k): break elif line =='history' or line =='h"htmlcode">可迭代对象和迭代器对象 需求:从网络抓取每个城市的气温消息,显示 北京:15-20 黑龙江:3-10 上海13-19 一次抓取所有城市信息,会占很大的存储空间,现在想“用时访问”,吧所有城市气温封装到一个对象里,用for迭代 可迭代对象: In [1]: l=[1,2,3,4,5] In [2]: s='abcde' iter内置函数,可以得到一个迭代器对象 由可迭代对象,得到迭代器 iter(l) In [23]: type(l) Out[23]: list In [24]: type(iter(l)) Out[24]: list_iterator 可迭代对象都有__iter方法,可迭代接口 或者__getitem__序列接口 可迭代对象可以通过next()取值 In [26]: t=iter(l) In [27]: next(t) Out[27]: 1 In [28]: next(t) Out[28]: 2 In [29]: next(t) Out[29]: 3 In [30]: next(t) Out[30]: 4 In [31]: next(t) Out[31]: 5 In [32]: next(t) --------------------------------------------------------------------------- StopIteration Traceback (most recent call last) <ipython-input-32-f843efe259be> in <module>() ----> 1 next(t) StopIteration:读写取excel文件
Microsoft Excel是Microsoft为使用Windows和Apple Macintosh操作系统的计算机编写的一款电子表格软件。直观的界面、出色的计算功能和图表工具,再加上成功的市场营销,使Excel成为最流行的个人计算机数据处理软件。
xlrd使用方法
import xlrd #打开excel文件,创建一个workbook对象,book对象也就是s11.xlsx文件,表含有sheet名 rbook=xlrd.open_workbook('/Users/yuchao/s11.xlsx') #sheets方法返回对象列表,[<xlrd.sheet.Sheet object at 0x103f147f0>] rbook.sheets() rsheet=rbook.sheet_by_index(0) #访问行数 rows=rsheet.nrows #访问列数 cols=rsheet.ncols print('行数:',rows,'列数',cols) #通过cell的位置坐标取得cell值 cell=rsheet.cell(0,0) print('0,0坐标的值是:',cell.value) #取得第二行的值,参数是(行数,起点,终点) row1=rsheet.row_values(1) print('第一行的值是:',row1)xlwt修改excel
# -*- coding:utf-8 -*- # Author : yuchao # Data : 2018/7/18 16:08 import xlrd, xlwt rbook = xlrd.open_workbook('/Users/yuchao/s11.xlsx') rsheet = rbook.sheet_by_index(0) # 取得sheet对象1 # 列数 nc = rsheet.ncols # 写入一条数据 rsheet.put_cell(0, nc, xlrd.XL_CELL_TEXT, '总分', None) # 遍历数据的行数 for row in range(1, rsheet.nrows): # 求和每一行数据 t = sum(rsheet.row_values(row, 1)) rsheet.put_cell(row, nc, xlrd.XL_CELL_NUMBER, t, None) #创建文档对象 wbook = xlwt.Workbook() wsheet = wbook.add_sheet(rsheet.name) #设置样式 style = xlwt.easyxf('align: vertical center, horizontal center') #遍历每一行 for r in range(rsheet.nrows): #每一列 for c in range(rsheet.ncols): wsheet.write(r,c,rsheet.cell_value(r,c),style) wbook.save('/Users/yuchao/s11_bak.xlsx')读取excel
import xlrd from xlrd.book import Book from xlrd.sheet import Sheet from xlrd.sheet import Cell workbook = xlrd.open_workbook('/Users/yuchao/s11.xlsx') sheet_names = workbook.sheet_names() # sheet = workbook.sheet_by_name('工作表1') sheet = workbook.sheet_by_index(1) # 循环Excel文件的所有行 for row in sheet.get_rows(): # 循环一行的所有列 for col in row: # 获取一个单元格中的值 print(col.value)以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
标签:
Python3,编程技巧
帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com
暂无评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2024年12月24日
2024年12月24日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]