帝王谷资源网 Design By www.wdxyy.com
最近邻:
import cv2 import numpy as np def function(img): height,width,channels =img.shape emptyImage=np.zeros((2048,2048,channels),np.uint8) sh=2048/height sw=2048/width for i in range(2048): for j in range(2048): x=int(i/sh) y=int(j/sw) emptyImage[i,j]=img[x,y] return emptyImage img=cv2.imread("e:\\lena.bmp") zoom=function(img) cv2.imshow("nearest neighbor",zoom) cv2.imshow("image",img) cv2.waitKey(0)
双线性:
import cv2 import numpy as np import math def function(img,m,n): height,width,channels =img.shape emptyImage=np.zeros((m,n,channels),np.uint8) value=[0,0,0] sh=m/height sw=n/width for i in range(m): for j in range(n): x = i/sh y = j/sw p=(i+0.0)/sh-x q=(j+0.0)/sw-y x=int(x)-1 y=int(y)-1 for k in range(3): if x+1<m and y+1<n: value[k]=int(img[x,y][k]*(1-p)*(1-q)+img[x,y+1][k]*q*(1-p)+img[x+1,y][k]*(1-q)*p+img[x+1,y+1][k]*p*q) emptyImage[i, j] = (value[0], value[1], value[2]) return emptyImage img=cv2.imread("e:\\lena.bmp") zoom=function(img,2048,2048) cv2.imshow("Bilinear Interpolation",zoom) cv2.imshow("image",img) cv2.waitKey(0)
双三次:
import cv2 import numpy as np import math def S(x): x = np.abs(x) if 0 <= x < 1: return 1 - 2 * x * x + x * x * x if 1 <= x < 2: return 4 - 8 * x + 5 * x * x - x * x * x else: return 0 def function(img,m,n): height,width,channels =img.shape emptyImage=np.zeros((m,n,channels),np.uint8) sh=m/height sw=n/width for i in range(m): for j in range(n): x = i/sh y = j/sw p=(i+0.0)/sh-x q=(j+0.0)/sw-y x=int(x)-2 y=int(y)-2 A = np.array([ [S(1 + p), S(p), S(1 - p), S(2 - p)] ]) if x>=m-3: m-1 if y>=n-3: n-1 if x>=1 and x<=(m-3) and y>=1 and y<=(n-3): B = np.array([ [img[x-1, y-1], img[x-1, y], img[x-1, y+1], img[x-1, y+1]], [img[x, y-1], img[x, y], img[x, y+1], img[x, y+2]], [img[x+1, y-1], img[x+1, y], img[x+1, y+1], img[x+1, y+2]], [img[x+2, y-1], img[x+2, y], img[x+2, y+1], img[x+2, y+1]], ]) C = np.array([ [S(1 + q)], [S(q)], [S(1 - q)], [S(2 - q)] ]) blue = np.dot(np.dot(A, B[:, :, 0]), C)[0, 0] green = np.dot(np.dot(A, B[:, :, 1]), C)[0, 0] red = np.dot(np.dot(A, B[:, :, 2]), C)[0, 0] # ajust the value to be in [0,255] def adjust(value): if value > 255: value = 255 elif value < 0: value = 0 return value blue = adjust(blue) green = adjust(green) red = adjust(red) emptyImage[i, j] = np.array([blue, green, red], dtype=np.uint8) return emptyImage img=cv2.imread("e:\\lena.bmp") zoom=function(img,1024,1024) cv2.imshow("cubic",zoom) cv2.imshow("image",img) cv2.waitKey(0)
补充知识:最邻近插值法(The nearest interpolation)实现图像缩放
也称零阶插值。它输出的像素灰度值就等于距离它映射到的位置最近的输入像素的灰度值。但当图像中包含像素之间灰度级有变化的细微结构时,最邻近算法会在图像中产生人为加工的痕迹。
具体计算方法:对于一个目的坐标,设为 M(x,y),通过向后映射法得到其在原始图像的对应的浮点坐标,设为 m(i+u,j+v),其中 i,j 为正整数,u,v 为大于零小于1的小数(下同),则待求象素灰度的值 f(m)。利用浮点 m 相邻的四个像素求f(m)的值。
function re_im = nearest(im, p, q) %最邻近插值法,输入目标图像和行缩放、纵缩放倍数 %ziheng 2016.3.27 [m,n] = size(im); im_R = im(:,:,1); im_G = im(:,:,2); im_B = im(:,:,3); l = round(m*p); h = round(n*q)/3; re_R = uint8(zeros(l,h)); re_G = uint8(zeros(l,h)); re_B = uint8(zeros(l,h)); for dstx = 1:l for dsty = 1:h srcx = max(1,min(m,round(dstx/p))); srcy = max(1,min(n/3,round(dsty/q))); re_R(dstx,dsty) = im_R(srcx,srcy); re_G(dstx,dsty) = im_G(srcx,srcy); re_B(dstx,dsty) = im_B(srcx,srcy); end end re_im = cat(3,re_R,re_G,re_B); figure,imshow(re_im);
以上这篇python 图像插值 最近邻、双线性、双三次实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com
暂无评论...
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
2024年12月26日
2024年12月26日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]