原文链接:https://blog.csdn.net/Fairy_Nan/article/details/105914203
HDF也是一种自描述格式文件,主要用于存储和分发科学数据。气象领域中卫星数据经常使用此格式,比如MODIS,OMI,LIS/OTD等卫星产品。对HDF格式细节感兴趣的可以Google了解一下。
这一次呢还是以Python为主,来介绍如何处理HDF格式数据。Python中有不少库都可以用来处理HDF格式数据,比如h5py可以处理HDF5格式(pandas中 read_hdf 函数),pyhdf可以用来处理HDF4格式。此外,gdal也可以处理HDF(NetCDF,GRIB等)格式数据。
安装
首先安装相关库
上述库均可以通过conda包管理器进行安装,如果conda包管理器无法安装,对于windows系统,可以查找是否存在已打包的安装包,而unix系统可以通过源码编译安装。
数据处理和可视化
以LIS/OTD卫星闪电成像数据为例,处理HDF4格式数据并进行绘图:
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm, colors import seaborn as sns import cartopy.crs as ccrs from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter from pyhdf.SD import SD, SDC sns.set_context('talk', font_scale=1.3) data = SD('LISOTD_LRMTS_V2.3.2014.hdf', SDC.READ) lon = data.select('Longitude') lat = data.select('Latitude') flash = data.select('LRMTS_COM_FR') # 设置colormap collev= ['#ffffff', '#ab18b0', '#07048f', '#1ba01f', '#dfdf18', '#e88f14', '#c87d23', '#d30001', '#383838'] levels = [0, 0.01, 0.02, 0.04, 0.06, 0.1, 0.12, 0.15, 0.18, 0.2] cmaps = colors.ListedColormap(collev, 'indexed') norm = colors.BoundaryNorm(levels, cmaps.N) proj = ccrs.PlateCarree() fig, ax = plt.subplots(figsize=(16, 9), subplot_kw=dict(projection=proj)) LON, LAT= np.meshgrid(lon[:], lat[:]) con = ax.contourf(LON, LAT, flash[:, :, 150], cmap=cmaps, norm=norm, levels=levels, extend='max') cb = fig.colorbar(con, shrink=0.75, pad=0.02) cb.cmap.set_over('#000000') cb.ax.tick_params(direction='in', length=5) ax.coastlines() ax.set_xticks(np.linspace(-180, 180, 5), crs=proj) ax.set_yticks(np.linspace(-90, 90, 5), crs=proj) lon_formatter= LongitudeFormatter(zero_direction_label=True) lat_formatter= LatitudeFormatter() ax.xaxis.set_major_formatter(lon_formatter) ax.yaxis.set_major_formatter(lat_formatter)
某月全球闪电密度分布
上述示例基于pyhdf进行HDF4格式数据处理和可视化,HDF4文件中包含的变量和属性获取方式见文末的Notebook,其中给出了 更详细的示例。
以下基于h5py读取HDF5格式数据,以OMI卫星O3数据为例:
import h5py data = h5py.File('TES-Aura_L3-O3-M2005m07_F01_10.he5') lon = data.get('/HDFEOS/GRIDS/NadirGrid/Data Fields/Longitude').value lat = data.get('/HDFEOS/GRIDS/NadirGrid/Data Fields/Latitude').value o3 = data.get('/HDFEOS/GRIDS/NadirGrid/Data Fields/O3').value proj = ccrs.PlateCarree() fig, ax = plt.subplots(figsize=(16, 9), subplot_kw=dict(projection=proj)) LON, LAT = np.meshgrid(lon[:], lat[:]) con = ax.contourf(LON, LAT, o3[10, :, :]*1e6, np.arange(0, 8.01, 0.1), vmin=0, vmax=8, cmap=cm.RdGy_r) ax.coastlines() ax.set_xticks(np.linspace(-180, 180, 5), crs=proj) ax.set_yticks(np.linspace(-90, 90, 5), crs=proj) lon_formatter = LongitudeFormatter(zero_direction_label=True) lat_formatter = LatitudeFormatter() ax.xaxis.set_major_formatter(lon_formatter) ax.yaxis.set_major_formatter(lat_formatter) cb = fig.colorbar(con, shrink=0.75, pad=0.02) cb.set_ticks(np.arange(0, 8.01, 1)) cb.ax.tick_params(direction='in', length=5)
上述示例中使用类似unix中路径的方式获取相关变量,这在HDF格式数据中称为Groups。不同的组可以包含子组,从而形成类似嵌套的形式。详细的介绍可Google了解。
总结
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]