可视化对于大家来说确实是有关的,因为确实是直观的,每一组大数据如果可以用可视化进行展示的话可以让大家豁然开朗。但在另外一些场景中,辅之以少量的文字提示(textual cue)
和标签是必不可少的。虽然最基本的注释(annotation)
类型可能只是坐标轴标题与图标题,但注释可远远不止这些。让我们可视化一些数据,看看如何通过添加注释来更恰当地表达信息。
首先导入画图需要用到的一些函数:
import matplotlib.pyplot as plt import matplotlib as mpl plt.style.use('seaborn-whitegrid') import numpy as np import pandas as pd
1 案例:节假日对美国出生率的影响
数据可以在 https://github.com/jakevdp/data-CDCbirths 下载,数据类型如下:
用清洗方法处理数据,然后画出结果。
日均出生人数统计图
births = pd.read_csv('births.csv') quartiles = np.percentile(births['births'], [25, 50, 75]) mu, sig = quartiles[1], 0.74 * (quartiles[2] - quartiles[0]) births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)') births['day'] = births['day'].astype(int) births.index = pd.to_datetime(10000 * births.year + 100 * births.month + births.day, format='%Y%m%d') births_by_date = births.pivot_table('births', [births.index.month, births.index.day]) births_by_date.index = [pd.datetime(2012, month, day) for (month, day) in births_by_date.index] fig, ax = plt.subplots(figsize=(12, 4)) births_by_date.plot(ax=ax);
import matplotlib.pyplot as plt import matplotlib as mpl plt.style.use('seaborn-whitegrid') import numpy as np import pandas as pd births = pd.read_csv('C:\\Users\\Y\\Desktop\\data-CDCbirths-master\\births.csv') quartiles = np.percentile(births['births'], [25, 50, 75]) mu, sig = quartiles[1], 0.74 * (quartiles[2] - quartiles[0]) births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)') births['day'] = births['day'].astype(int) births.index = pd.to_datetime(10000 * births.year + 100 * births.month + births.day, format='%Y%m%d') births_by_date = births.pivot_table('births', [births.index.month, births.index.day]) births_by_date.index = [pd.datetime(2012, month, day) for (month, day) in births_by_date.index] fig, ax = plt.subplots(figsize=(12, 4)) births_by_date.plot(ax=ax); plt.show()
为日均出生人数统计图添加注释
在用这样的图表达观点时,如果可以在图中增加一些注释,就更能吸引读者的注意了。可以通过 plt.text / ax.text
命令手动添加注释,它们可以在具体的 x / y 坐标点上放上文字
fig, ax = plt.subplots(figsize=(12, 4)) births_by_date.plot(ax=ax) # 在图上增加文字标签 style = dict(size=10, color='gray') ax.text('2012-1-1', 3950, "New Year's Day", **style) ax.text('2012-7-4', 4250, "Independence Day", ha='center', **style) ax.text('2012-9-4', 4850, "Labor Day", ha='center', **style) ax.text('2012-10-31', 4600, "Halloween", ha='right', **style) ax.text('2012-11-25', 4450, "Thanksgiving", ha='center', **style) ax.text('2012-12-25', 3850, "Christmas ", ha='right', **style) # 设置坐标轴标题 ax.set(title='USA births by day of year (1969-1988)', ylabel='average daily births') # 设置x轴刻度值,让月份居中显示 ax.xaxis.set_major_locator(mpl.dates.MonthLocator()) ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymonthday=15)) ax.xaxis.set_major_formatter(plt.NullFormatter()) ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter('%h'));
import matplotlib.pyplot as plt import matplotlib as mpl plt.style.use('seaborn-whitegrid') import numpy as np import pandas as pd births = pd.read_csv('C:\\Users\\Y\\Desktop\\data-CDCbirths-master\\births.csv') quartiles = np.percentile(births['births'], [25, 50, 75]) mu, sig = quartiles[1], 0.74 * (quartiles[2] - quartiles[0]) births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)') births['day'] = births['day'].astype(int) births.index = pd.to_datetime(10000 * births.year + 100 * births.month + births.day, format='%Y%m%d') births_by_date = births.pivot_table('births', [births.index.month, births.index.day]) births_by_date.index = [pd.datetime(2012, month, day) for (month, day) in births_by_date.index] fig, ax = plt.subplots(figsize=(12, 4)) births_by_date.plot(ax=ax) # 在图上增加文字标签 style = dict(size=10, color='gray') ax.text('2012-1-1', 3950, "New Year's Day", **style) ax.text('2012-7-4', 4250, "Independence Day", ha='center', **style) ax.text('2012-9-4', 4850, "Labor Day", ha='center', **style) ax.text('2012-10-31', 4600, "Halloween", ha='right', **style) ax.text('2012-11-25', 4450, "Thanksgiving", ha='center', **style) ax.text('2012-12-25', 3850, "Christmas ", ha='right', **style) # 设置坐标轴标题 ax.set(title='USA births by day of year (1969-1988)', ylabel='average daily births') # 设置x轴刻度值,让月份居中显示 ax.xaxis.set_major_locator(mpl.dates.MonthLocator()) ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymonthday=15)) ax.xaxis.set_major_formatter(plt.NullFormatter()) ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter('%h')); plt.show()
ax.text
方法需要一个 x 轴坐标、一个 y 轴坐标、一个字符串和一些可选参数,比如文字的颜色、字号、风格、对齐方式以及其他文字属性。这里用了 ha='right'
与 ha='center'
,ha
是水平对齐方式(horizonal alignment
)的缩写。关于配置参数的更多信息,请参考plt.text()
与 mpl.text.Text()
的程序文档。
2 坐标变换与文字位置
前面的示例将文字放在了目标数据的位置上。但有时候可能需要将文字放在与数据无关的位置上,比如坐标轴或者图形中。在 Matplotlib 中,我们通过调整坐标变换(transform)
来实现。
任何图形显示框架都需要一些变换坐标系的机制。例如,当一个位于 (x, y) = (1, 1)
位置的点需要以某种方式显示在图上特定的位置时,就需要用屏幕的像素来表示。用数学方法处理这种坐标系变换很简单,Matplotlib 有一组非常棒的工具可以实现类似功能(这些工具位于 matplotlib.transforms 子模块
中)。
虽然一般用户并不需要关心这些变换的细节,但是了解这些知识对在图上放置文字大有帮助。一共有三种解决这类问题的预定义变换方式。
- ax.transData 以数据为基准的坐标变换。
- ax.transAxes 以坐标轴为基准的坐标变换(以坐标轴维度为单位)。
- fig.transFigure 以图形为基准的坐标变换(以图形维度为单位)。
默认情况下,上面的文字在各自的坐标系中都是左对齐的。这三个字符串开头的 . 字符基本就是对应的坐标位置。
transData
坐标用 x 轴与 y 轴的标签作为数据坐标。
transAxes
坐标以坐标轴(图中白色矩形)左下角的位置为原点,按坐标轴尺寸的比例呈现坐标。
transFigure
坐标与之类似,不过是以图形(图中灰色矩形)左下角的位置为原点,按图形尺寸的比例呈现坐标。
对比 Matplotlib 的三种坐标系(1)
下面举一个例子,用三种变换方式将文字画在不同的位置:
fig, ax = plt.subplots(facecolor='lightgray') ax.axis([0, 10, 0, 10]) # 虽然transform=ax.transData是默认值,但还是设置一下 ax.text(1, 5, ". Data: (1, 5)", transform=ax.transData) ax.text(0.5, 0.1, ". Axes: (0.5, 0.1)", transform=ax.transAxes) ax.text(0.2, 0.2, ". Figure: (0.2, 0.2)", transform=fig.transFigure);
import matplotlib.pyplot as plt import matplotlib as mpl plt.style.use('seaborn-whitegrid') import numpy as np import pandas as pd births = pd.read_csv('C:\\Users\\Y\\Desktop\\data-CDCbirths-master\\births.csv') quartiles = np.percentile(births['births'], [25, 50, 75]) mu, sig = quartiles[1], 0.74 * (quartiles[2] - quartiles[0]) births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)') births['day'] = births['day'].astype(int) births.index = pd.to_datetime(10000 * births.year + 100 * births.month + births.day, format='%Y%m%d') births_by_date = births.pivot_table('births', [births.index.month, births.index.day]) births_by_date.index = [pd.datetime(2012, month, day) for (month, day) in births_by_date.index] fig, ax = plt.subplots(facecolor='lightgray') ax.axis([0, 10, 0, 10]) # 虽然transform=ax.transData是默认值,但还是设置一下 ax.text(1, 5, ". Data: (1, 5)", transform=ax.transData) ax.text(0.5, 0.1, ". Axes: (0.5, 0.1)", transform=ax.transAxes) ax.text(0.2, 0.2, ". Figure: (0.2, 0.2)", transform=fig.transFigure); plt.show()
对比 Matplotlib 的三种坐标系(2)
需要注意的是,假如你改变了坐标轴上下限,那么只有 transData 坐标会受影响,其他坐标系都不变
ax.set_xlim(0, 2) ax.set_ylim(-6, 6) fig
import matplotlib.pyplot as plt import matplotlib as mpl plt.style.use('seaborn-whitegrid') import numpy as np import pandas as pd births = pd.read_csv('C:\\Users\\Y\\Desktop\\data-CDCbirths-master\\births.csv') quartiles = np.percentile(births['births'], [25, 50, 75]) mu, sig = quartiles[1], 0.74 * (quartiles[2] - quartiles[0]) births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)') births['day'] = births['day'].astype(int) births.index = pd.to_datetime(10000 * births.year + 100 * births.month + births.day, format='%Y%m%d') births_by_date = births.pivot_table('births', [births.index.month, births.index.day]) births_by_date.index = [pd.datetime(2012, month, day) for (month, day) in births_by_date.index] fig, ax = plt.subplots(facecolor='lightgray') ax.axis([0, 10, 0, 10]) # 虽然transform=ax.transData是默认值,但还是设置一下 ax.text(1, 5, ". Data: (1, 5)", transform=ax.transData) ax.text(0.5, 0.1, ". Axes: (0.5, 0.1)", transform=ax.transAxes) ax.text(0.2, 0.2, ". Figure: (0.2, 0.2)", transform=fig.transFigure); ax.set_xlim(0, 2) ax.set_ylim(-6, 6) fig plt.show()
如果你改变了坐标轴上下限,那么就可以更清晰地看到刚刚所说的变化。
3 箭头与注释
除了刻度线和文字,简单的箭头也是一种有用的注释标签。
在 Matplotlib 里面画箭头通常比你想象的要困难。虽然有一个 plt.arrow()
函数可以实现这个功能,但是我不推荐使用它,因为它创建出的箭头是 SVG 向量图
对象,会随着图形分辨率的变化而改变,最终的结果可能完全不是用户想要的。我要推荐的是 plt.annotate()
函数。这个函数既可以创建文字,也可以创建箭头,而且它创建的箭头能够进行非常灵活的配置。
图形注释
下面用 annotate 的一些配置选项来演示
fig, ax = plt.subplots() x = np.linspace(0, 20, 1000) ax.plot(x, np.cos(x)) ax.axis('equal') ax.annotate('local maximum', xy=(6.28, 1), xytext=(10, 4),arrowprops=dict(facecolor='black', shrink=0.05)) ax.annotate('local minimum', xy=(5 * np.pi, -1), xytext=(2, -6),arrowprops=dict(arrowstyle="->", connectionstyle="angle3,angleA=0,angleB=-90"));
import matplotlib.pyplot as plt import matplotlib as mpl plt.style.use('seaborn-whitegrid') import numpy as np import pandas as pd births = pd.read_csv('C:\\Users\\Y\\Desktop\\data-CDCbirths-master\\births.csv') quartiles = np.percentile(births['births'], [25, 50, 75]) mu, sig = quartiles[1], 0.74 * (quartiles[2] - quartiles[0]) births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)') births['day'] = births['day'].astype(int) births.index = pd.to_datetime(10000 * births.year + 100 * births.month + births.day, format='%Y%m%d') births_by_date = births.pivot_table('births', [births.index.month, births.index.day]) births_by_date.index = [pd.datetime(2012, month, day) for (month, day) in births_by_date.index] fig, ax = plt.subplots() x = np.linspace(0, 20, 1000) ax.plot(x, np.cos(x)) ax.axis('equal') ax.annotate('local maximum', xy=(6.28, 1), xytext=(10, 4),arrowprops=dict(facecolor='black', shrink=0.05)) ax.annotate('local minimum', xy=(5 * np.pi, -1), xytext=(2, -6),arrowprops=dict(arrowstyle="->",connectionstyle="angle3,angleA=0,angleB=-90")); plt.show()
箭头的风格是通过 arrowprops 字典控制的,里面有许多可用的选项。由于这些选项在Matplotlib 的官方文档中都有非常详细的介绍,我就不再赘述,仅做一点儿功能演示。
带注释的日均出生人数
让我们用前面的美国出生人数图来演示一些箭头注释
fig, ax = plt.subplots(figsize=(12, 4)) births_by_date.plot(ax=ax) # 在图上增加箭头标签 ax.annotate("New Year's Day", xy=('2012-1-1', 4100), xycoords='data',xytext=(50, -30), textcoords='offset points',arrowprops=dict(arrowstyle="->",connectionstyle="arc3,rad=-0.2")) ax.annotate("Independence Day", xy=('2012-7-4', 4250),xycoords='data',bbox=dict(boxstyle="round", fc="none", ec="gray"),xytext=(10, -40), textcoords='offset points', ha='center', arrowprops=dict(arrowstyle="->")) ax.annotate('Labor Day', xy=('2012-9-4', 4850), xycoords='data', ha='center', xytext=(0, -20), textcoords='offset points') ax.annotate('', xy=('2012-9-1', 4850), xytext=('2012-9-7', 4850), xycoords='data', textcoords='data', arrowprops={'arrowstyle': '|-|,widthA=0.2,widthB=0.2', }) ax.annotate('Halloween', xy=('2012-10-31', 4600), xycoords='data', xytext=(-80, -40), textcoords='offset points', arrowprops=dict(arrowstyle="fancy", fc="0.6", ec="none", connectionstyle="angle3,angleA=0,angleB=-90")) ax.annotate('Thanksgiving', xy=('2012-11-25', 4500), xycoords='data', xytext=(-120, -60), textcoords='offset points', bbox=dict(boxstyle="round4,pad=.5", fc="0.9"), arrowprops=dict(arrowstyle="->", connectionstyle="angle,angleA=0,angleB=80,rad=20")) ax.annotate('Christmas', xy=('2012-12-25', 3850), xycoords='data', xytext=(-30, 0), textcoords='offset points', size=13, ha='right', va="center", bbox=dict(boxstyle="round", alpha=0.1), arrowprops=dict(arrowstyle="wedge,tail_width=0.5", alpha=0.1)); # 设置坐标轴标题 ax.set(title='USA births by day of year (1969-1988)', ylabel='average daily births') # 设置x轴刻度值,让月份居中显示 ax.xaxis.set_major_locator(mpl.dates.MonthLocator()) ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymonthday=15)) ax.xaxis.set_major_formatter(plt.NullFormatter()) ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter('%h')); ax.set_ylim(3600, 5400);
import matplotlib.pyplot as plt import matplotlib as mpl plt.style.use('seaborn-whitegrid') import numpy as np import pandas as pd births = pd.read_csv('C:\\Users\\Y\\Desktop\\data-CDCbirths-master\\births.csv') quartiles = np.percentile(births['births'], [25, 50, 75]) mu, sig = quartiles[1], 0.74 * (quartiles[2] - quartiles[0]) births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)') births['day'] = births['day'].astype(int) births.index = pd.to_datetime(10000 * births.year + 100 * births.month + births.day, format='%Y%m%d') births_by_date = births.pivot_table('births', [births.index.month, births.index.day]) births_by_date.index = [pd.datetime(2012, month, day) for (month, day) in births_by_date.index] fig, ax = plt.subplots(figsize=(12, 4)) births_by_date.plot(ax=ax) # 在图上增加箭头标签 ax.annotate("New Year's Day", xy=('2012-1-1', 4100), xycoords='data', xytext=(50, -30), textcoords='offset points', arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=-0.2")) ax.annotate("Independence Day", xy=('2012-7-4', 4250), xycoords='data', bbox=dict(boxstyle="round", fc="none", ec="gray"), xytext=(10, -40), textcoords='offset points', ha='center', arrowprops=dict(arrowstyle="->")) ax.annotate('Labor Day', xy=('2012-9-4', 4850), xycoords='data', ha='center', xytext=(0, -20), textcoords='offset points') ax.annotate('', xy=('2012-9-1', 4850), xytext=('2012-9-7', 4850), xycoords='data', textcoords='data', arrowprops={'arrowstyle': '|-|,widthA=0.2,widthB=0.2', }) ax.annotate('Halloween', xy=('2012-10-31', 4600), xycoords='data', xytext=(-80, -40), textcoords='offset points', arrowprops=dict(arrowstyle="fancy", fc="0.6", ec="none", connectionstyle="angle3,angleA=0,angleB=-90")) ax.annotate('Thanksgiving', xy=('2012-11-25', 4500), xycoords='data', xytext=(-120, -60), textcoords='offset points', bbox=dict(boxstyle="round4,pad=.5", fc="0.9"), arrowprops=dict(arrowstyle="->", connectionstyle="angle,angleA=0,angleB=80,rad=20")) ax.annotate('Christmas', xy=('2012-12-25', 3850), xycoords='data',xytext=(-30, 0), textcoords='offset points',size=13, ha='right', va="center",bbox=dict(boxstyle="round", alpha=0.1),arrowprops=dict(arrowstyle="wedge,tail_width=0.5", alpha=0.1)); # 设置坐标轴标题 ax.set(title='USA births by day of year (1969-1988)',ylabel='average daily births') # 设置x轴刻度值,让月份居中显示 ax.xaxis.set_major_locator(mpl.dates.MonthLocator()) ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymonthday=15)) ax.xaxis.set_major_formatter(plt.NullFormatter()) ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter('%h')); ax.set_ylim(3600, 5400); plt.show()
你可能已经注意到了,箭头和文本框的配置功能非常细致,这样你就可以创建自己想要的箭头风格了。不过,功能太过细致往往也就意味着操作起来比较复杂,如果真要做一个产品级的图形,可能得耗费大量的时间。最后我想说一句,前面适用的混合风格并不是数据可视化的最佳实践,仅仅是为演示一些功能而已。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]