帝王谷资源网 Design By www.wdxyy.com
本文实例为大家分享了Tensorflow之MNIST CNN实现并保存、加载模型的具体代码,供大家参考,具体内容如下
废话不说,直接上代码
# TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib.pyplot as plt import os #download the data mnist = keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() class_names = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] train_images = train_images / 255.0 test_images = test_images / 255.0 def create_model(): # It's necessary to give the input_shape,or it will fail when you load the model # The error will be like : You are trying to load the 4 layer models to the 0 layer model = keras.Sequential([ keras.layers.Conv2D(32,[5,5], activation=tf.nn.relu,input_shape = (28,28,1)), keras.layers.MaxPool2D(), keras.layers.Conv2D(64,[7,7], activation=tf.nn.relu), keras.layers.MaxPool2D(), keras.layers.Flatten(), keras.layers.Dense(576, activation=tf.nn.relu), keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer=tf.train.AdamOptimizer(), loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model #reshape the shape before using it, for that the input of cnn is 4 dimensions train_images = np.reshape(train_images,[-1,28,28,1]) test_images = np.reshape(test_images,[-1,28,28,1]) #train model = create_model() model.fit(train_images, train_labels, epochs=4) #save the model model.save('my_model.h5') #Evaluate test_loss, test_acc = model.evaluate(test_images, test_labels,verbose = 0) print('Test accuracy:', test_acc)
模型保存后,自己手写了几张图片,放在文件夹C:\pythonp\testdir2下,开始测试
#Load the model new_model = keras.models.load_model('my_model.h5') new_model.compile(optimizer=tf.train.AdamOptimizer(), loss='sparse_categorical_crossentropy', metrics=['accuracy']) new_model.summary() #Evaluate # test_loss, test_acc = new_model.evaluate(test_images, test_labels) # print('Test accuracy:', test_acc) #Predicte mypath = 'C:\\pythonp\\testdir2' def getimg(mypath): listdir = os.listdir(mypath) imgs = [] for p in listdir: img = plt.imread(mypath+'\\'+p) # I save the picture that I draw myself under Windows, but the saved picture's # encode style is just opposite with the experiment data, so I transfer it with # this line. img = np.abs(img/255-1) imgs.append(img[:,:,0]) return np.array(imgs),len(imgs) imgs = getimg(mypath) test_images = np.reshape(imgs[0],[-1,28,28,1]) predictions = new_model.predict(test_images) plt.figure() for i in range(imgs[1]): c = np.argmax(predictions[i]) plt.subplot(3,3,i+1) plt.xticks([]) plt.yticks([]) plt.imshow(test_images[i,:,:,0]) plt.title(class_names[c]) plt.show()
测试结果
自己手写的图片截的时候要注意,空白部分尽量不要太大,否则测试结果就呵呵了
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com
暂无评论...
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
2024年12月26日
2024年12月26日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]