前面说过混淆矩阵是我们在处理分类问题时,很重要的指标,那么如何更好的把混淆矩阵给打印出来呢,直接做表或者是前端可视化,小编曾经就尝试过用前端(D5)做出来,然后截图,显得不那么好看。。
代码:
import itertools import matplotlib.pyplot as plt import numpy as np def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') plt.show() # plt.savefig('confusion_matrix',dpi=200) cnf_matrix = np.array([ [4101, 2, 5, 24, 0], [50, 3930, 6, 14, 5], [29, 3, 3973, 4, 0], [45, 7, 1, 3878, 119], [31, 1, 8, 28, 3936], ]) class_names = ['Buildings', 'Farmland', 'Greenbelt', 'Wasteland', 'Water'] # plt.figure() # plot_confusion_matrix(cnf_matrix, classes=class_names, # title='Confusion matrix, without normalization') # Plot normalized confusion matrix plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True, title='Normalized confusion matrix')
在放矩阵位置,放一下你的混淆矩阵就可以,当然可视化混淆矩阵这一步也可以直接在模型运行中完成。
补充知识:混淆矩阵(Confusion matrix)的原理及使用(scikit-learn 和 tensorflow)
原理
在机器学习中, 混淆矩阵是一个误差矩阵, 常用来可视化地评估监督学习算法的性能. 混淆矩阵大小为 (n_classes, n_classes) 的方阵, 其中 n_classes 表示类的数量. 这个矩阵的每一行表示真实类中的实例, 而每一列表示预测类中的实例 (Tensorflow 和 scikit-learn 采用的实现方式). 也可以是, 每一行表示预测类中的实例, 而每一列表示真实类中的实例 (Confusion matrix From Wikipedia 中的定义). 通过混淆矩阵, 可以很容易看出系统是否会弄混两个类, 这也是混淆矩阵名字的由来.
混淆矩阵是一种特殊类型的列联表(contingency table)或交叉制表(cross tabulation or crosstab). 其有两维 (真实值 "actual" 和 预测值 "predicted" ), 这两维都具有相同的类("classes")的集合. 在列联表中, 每个维度和类的组合是一个变量. 列联表以表的形式, 可视化地表示多个变量的频率分布.
使用混淆矩阵( scikit-learn 和 Tensorflow)
下面先介绍在 scikit-learn 和 tensorflow 中计算混淆矩阵的 API (Application Programming Interface) 接口函数, 然后在一个示例中, 使用这两个 API 函数.
scikit-learn 混淆矩阵函数 sklearn.metrics.confusion_matrix API 接口
skearn.metrics.confusion_matrix( y_true, # array, Gound true (correct) target values y_pred, # array, Estimated targets as returned by a classifier labels=None, # array, List of labels to index the matrix. sample_weight=None # array-like of shape = [n_samples], Optional sample weights )
在 scikit-learn 中, 计算混淆矩阵用来评估分类的准确度.
按照定义, 混淆矩阵 C 中的元素 Ci,j 等于真实值为组 i , 而预测为组 j 的观测数(the number of observations). 所以对于二分类任务, 预测结果中, 正确的负例数(true negatives, TN)为 C0,0; 错误的负例数(false negatives, FN)为 C1,0; 真实的正例数为 C1,1; 错误的正例数为 C0,1.
如果 labels 为 None, scikit-learn 会把在出现在 y_true 或 y_pred 中的所有值添加到标记列表 labels 中, 并排好序.
Tensorflow 混淆矩阵函数 tf.confusion_matrix API 接口
tf.confusion_matrix( labels, # 1-D Tensor of real labels for the classification task predictions, # 1-D Tensor of predictions for a givenclassification num_classes=None, # The possible number of labels the classification task can have dtype=tf.int32, # Data type of the confusion matrix name=None, # Scope name weights=None, # An optional Tensor whose shape matches predictions )
Tensorflow tf.confusion_matrix 中的 num_classes 参数的含义, 与 scikit-learn sklearn.metrics.confusion_matrix 中的 labels 参数相近, 是与标记有关的参数, 表示类的总个数, 但没有列出具体的标记值. 在 Tensorflow 中一般是以整数作为标记, 如果标记为字符串等非整数类型, 则需先转为整数表示. 如果 num_classes 参数为 None, 则把 labels 和 predictions 中的最大值 + 1, 作为num_classes 参数值.
tf.confusion_matrix 的 weights 参数和 sklearn.metrics.confusion_matrix 的 sample_weight 参数的含义相同, 都是对预测值进行加权, 在此基础上, 计算混淆矩阵单元的值.
使用示例
#!/usr/bin/env python # -*- coding: utf8 -*- """ Author: klchang Description: A simple example for tf.confusion_matrix and sklearn.metrics.confusion_matrix. Date: 2018.9.8 """ from __future__ import print_function import tensorflow as tf import sklearn.metrics y_true = [1, 2, 4] y_pred = [2, 2, 4] # Build graph with tf.confusion_matrix operation sess = tf.InteractiveSession() op = tf.confusion_matrix(y_true, y_pred) op2 = tf.confusion_matrix(y_true, y_pred, num_classes=6, dtype=tf.float32, weights=tf.constant([0.3, 0.4, 0.3])) # Execute the graph print ("confusion matrix in tensorflow: ") print ("1. default: \n", op.eval()) print ("2. customed: \n", sess.run(op2)) sess.close() # Use sklearn.metrics.confusion_matrix function print ("\nconfusion matrix in scikit-learn: ") print ("1. default: \n", sklearn.metrics.confusion_matrix(y_true, y_pred)) print ("2. customed: \n", sklearn.metrics.confusion_matrix(y_true, y_pred, labels=range(6), sample_weight=[0.3, 0.4, 0.3]))
以上这篇利用python中的matplotlib打印混淆矩阵实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]