帝王谷资源网 Design By www.wdxyy.com
我就废话不多说了,大家还是直接看代码吧!
#加载keras模块 from __future__ import print_function import numpy as np np.random.seed(1337) # for reproducibility import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import SGD, Adam, RMSprop from keras.utils import np_utils import matplotlib.pyplot as plt %matplotlib inline #写一个LossHistory类,保存loss和acc class LossHistory(keras.callbacks.Callback): def on_train_begin(self, logs={}): self.losses = {'batch':[], 'epoch':[]} self.accuracy = {'batch':[], 'epoch':[]} self.val_loss = {'batch':[], 'epoch':[]} self.val_acc = {'batch':[], 'epoch':[]} def on_batch_end(self, batch, logs={}): self.losses['batch'].append(logs.get('loss')) self.accuracy['batch'].append(logs.get('acc')) self.val_loss['batch'].append(logs.get('val_loss')) self.val_acc['batch'].append(logs.get('val_acc')) def on_epoch_end(self, batch, logs={}): self.losses['epoch'].append(logs.get('loss')) self.accuracy['epoch'].append(logs.get('acc')) self.val_loss['epoch'].append(logs.get('val_loss')) self.val_acc['epoch'].append(logs.get('val_acc')) def loss_plot(self, loss_type): iters = range(len(self.losses[loss_type])) plt.figure() # acc plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc') # loss plt.plot(iters, self.losses[loss_type], 'g', label='train loss') if loss_type == 'epoch': # val_acc plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc') # val_loss plt.plot(iters, self.val_loss[loss_type], 'k', label='val loss') plt.grid(True) plt.xlabel(loss_type) plt.ylabel('acc-loss') plt.legend(loc="upper right") plt.show() #变量初始化 batch_size = 128 nb_classes = 10 nb_epoch = 20 # the data, shuffled and split between train and test sets (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.reshape(60000, 784) X_test = X_test.reshape(10000, 784) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) #建立模型 使用Sequential() model = Sequential() model.add(Dense(512, input_shape=(784,))) model.add(Activation('relu')) model.add(Dropout(0.2)) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.2)) model.add(Dense(10)) model.add(Activation('softmax')) #打印模型 model.summary() #训练与评估 #编译模型 model.compile(loss='categorical_crossentropy', optimizer=RMSprop(), metrics=['accuracy']) #创建一个实例history history = LossHistory() #迭代训练(注意这个地方要加入callbacks) model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, validation_data=(X_test, Y_test), callbacks=[history]) #模型评估 score = model.evaluate(X_test, Y_test, verbose=0) print('Test score:', score[0]) print('Test accuracy:', score[1]) #绘制acc-loss曲线 history.loss_plot('epoch')
补充知识:keras中自定义验证集的性能评估(ROC,AUC)
在keras中自带的性能评估有准确性以及loss,当需要以auc作为评价验证集的好坏时,就得自己写个评价函数了:
from sklearn.metrics import roc_auc_score from keras import backend as K # AUC for a binary classifier def auc(y_true, y_pred): ptas = tf.stack([binary_PTA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0) pfas = tf.stack([binary_PFA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0) pfas = tf.concat([tf.ones((1,)) ,pfas],axis=0) binSizes = -(pfas[1:]-pfas[:-1]) s = ptas*binSizes return K.sum(s, axis=0) #------------------------------------------------------------------------------------ # PFA, prob false alert for binary classifier def binary_PFA(y_true, y_pred, threshold=K.variable(value=0.5)): y_pred = K.cast(y_pred >= threshold, 'float32') # N = total number of negative labels N = K.sum(1 - y_true) # FP = total number of false alerts, alerts from the negative class labels FP = K.sum(y_pred - y_pred * y_true) return FP/N #----------------------------------------------------------------------------------- # P_TA prob true alerts for binary classifier def binary_PTA(y_true, y_pred, threshold=K.variable(value=0.5)): y_pred = K.cast(y_pred >= threshold, 'float32') # P = total number of positive labels P = K.sum(y_true) # TP = total number of correct alerts, alerts from the positive class labels TP = K.sum(y_pred * y_true) return TP/P #接着在模型的compile中设置metrics #如下例子,我用的是RNN做分类
from keras.models import Sequential from keras.layers import Dense, Dropout import keras from keras.layers import GRU model = Sequential() model.add(keras.layers.core.Masking(mask_value=0., input_shape=(max_lenth, max_features))) #masking用于变长序列输入 model.add(GRU(units=n_hidden_units,activation='selu',kernel_initializer='orthogonal', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=regularizers.l2(0.01), recurrent_regularizer=regularizers.l2(0.01), bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.5, recurrent_dropout=0.0, implementation=1, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False)) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=[auc]) #写入自定义评价函数
接下来就自己作预测了...
方法二:
from sklearn.metrics import roc_auc_score import keras class RocAucMetricCallback(keras.callbacks.Callback): def __init__(self, predict_batch_size=1024, include_on_batch=False): super(RocAucMetricCallback, self).__init__() self.predict_batch_size=predict_batch_size self.include_on_batch=include_on_batch def on_batch_begin(self, batch, logs={}): pass def on_batch_end(self, batch, logs={}): if(self.include_on_batch): logs['roc_auc_val']=float('-inf') if(self.validation_data): logs['roc_auc_val']=roc_auc_score(self.validation_data[1], self.model.predict(self.validation_data[0], batch_size=self.predict_batch_size)) def on_train_begin(self, logs={}): if not ('roc_auc_val' in self.params['metrics']): self.params['metrics'].append('roc_auc_val') def on_train_end(self, logs={}): pass def on_epoch_begin(self, epoch, logs={}): pass def on_epoch_end(self, epoch, logs={}): logs['roc_auc_val']=float('-inf') if(self.validation_data): logs['roc_auc_val']=roc_auc_score(self.validation_data[1], self.model.predict(self.validation_data[0], batch_size=self.predict_batch_size)) import numpy as np import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Dropout from keras.layers import GRU import keras from keras.callbacks import EarlyStopping from sklearn.metrics import roc_auc_score from keras import metrics cb = [ my_callbacks.RocAucMetricCallback(), # include it before EarlyStopping! EarlyStopping(monitor='roc_auc_val',patience=300, verbose=2,mode='max') ] model = Sequential() model.add(keras.layers.core.Masking(mask_value=0., input_shape=(max_lenth, max_features))) # model.add(Embedding(input_dim=max_features+1, output_dim=64,mask_zero=True)) model.add(GRU(units=n_hidden_units,activation='selu',kernel_initializer='orthogonal', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=regularizers.l2(0.01), recurrent_regularizer=regularizers.l2(0.01), bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.5, recurrent_dropout=0.0, implementation=1, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False)) #input_shape=(max_lenth, max_features), model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=[auc]) #这里就可以写其他评估标准 model.fit(x_train, y_train, batch_size=train_batch_size, epochs=training_iters, verbose=2, callbacks=cb,validation_split=0.2, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0)
亲测有效!
以上这篇keras绘制acc和loss曲线图实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com
暂无评论...
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
2024年12月26日
2024年12月26日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]