一直记不住在jupyter notebook配置多环境编译器技巧,今总结于此,也希望对其他小伙伴有所帮助,如果有用请点赞!
1.对windows用户,win+R,输入cmd进去进入命令行,激活环境:
2.首先,确定自己是否安装包‘ipykernel',若是没有安装,则进行安装;已安装进行下一步。
3.然后输入命令:
python -m ipykernel install --user --name deeplearningproject --display-name "deeplearningproject"
注:上述两个 deeplearningproject,前者是自身环境名称,不能变化;后者是在jupyter notebook的显示名称,可修改。
4.至此,完成所有操作,输入jupyter notebook进行验证
5.大功告成
至此,完成所有操作。
补充知识:Python Jupyter notebook 运行 multiprocessing 跑不了的问题
最近工作中为了解决python支持多核cpu,遇到一个Jupyter notebook跑不了multiprocessing的问题。
网上找了些multiprocessing的例子,Pycharm可以跑,但是在Jupyter notebook上跑了就只有In[*],error log:
AttributeError: Can't get attribute 'task' on <module '__main__' <built-in
最后找到一个解决方案:把方法写到临时文件里,再读出来。
from multiprocessing import Pool from functools import partial import inspect def parallal_task(func, iterable, *params): with open(f'./tmp_func.py', 'w') as file: file.write(inspect.getsource(func).replace(func.__name__, "task")) from tmp_func import task if __name__ == '__main__': func = partial(task, params) pool = Pool(processes=8) res = pool.map(func, iterable) pool.close() return res else: raise "Not in Jupyter Notebook"
def long_running_task(params, id): # Heavy job here return params, id data_list = range(8) for res in parallal_task(long_running_task, data_list, "a", 1, "b"): print(res)
传送门:https://stackoverflow.com/questions/47313732/jupyter-notebook-never-finishes-processing-using-multiprocessing-python-3?r=SearchResults
以上这篇jupyter notebook 多环境conda kernel配置方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]