帝王谷资源网 Design By www.wdxyy.com

python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU资源,在python中大部分情况需要使用多进程。python提供了非常好用的多进程包Multiprocessing,只需要定义一个函数,python会完成其它所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、LocK等组件

一、Process

语法:Process([group[,target[,name[,args[,kwargs]]]]])

参数含义:target表示调用对象;args表示调用对象的位置参数元祖;kwargs表示调用对象的字典。name为别名,groups实际上不会调用。

方法:is_alive():

   join(timeout):

   run():

   start():

   terminate():

属性:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为-N,表示被信号N结束)、name、pid。其中daemon是父进程终止后自动终止,且自己不能产生新的进程,必须在start()之前设置。

1.创建函数,并将其作为单个进程

from multiprocessing import Process
def func(name):
 print("%s曾经是好人"%name)
if __name__ == "__main__":
 p = Process(target=func,args=('kebi',))
 p.start() #start()通知系统开启这个进程

2.创建函数并将其作为多个进程

from multiprocessing import Process
import random,time

def hobby_motion(name):
 print('%s喜欢运动'% name)
 time.sleep(random.randint(1,3))

def hobby_game(name):
 print('%s喜欢游戏'% name)
 time.sleep(random.randint(1,3))

if __name__ == "__main__":
 p1 = Process(target=hobby_motion,args=('付婷婷',))
 p2 = Process(target=hobby_game,args=('科比',))
 p1.start()
 p2.start()

执行结果:

付婷婷喜欢运动
科比喜欢游戏

3.将进程定义为类(开启进程的另一种方法,并不是很常用)

from multiprocessing import Process
class MyProcess(Process):
 def __init__(self,name):
 super().__init__()
 self.name = name
 def run(self): #start()时,run自动调用,而且此处只能定义为run。
 print("%s曾经是好人"%self.name)
if __name__ == "__main__":
 p = MyProcess('kebi')
 p.start() #将Process当作父类,并且自定义一个函数。

4.daemon程序对比效果

不加daemon属性

import time
def func(name):
 print("work start:%s"% time.ctime())
 time.sleep(2)
 print("work end:%s"% time.ctime())

if __name__ == "__main__":
 p = Process(target=func,args=('kebi',))
 p.start()
 print("this is over")
#执行结果
this is over
work start:Thu Nov 30 16:12:00 2017
work end:Thu Nov 30 16:12:02 2017

加上daemon属性

from multiprocessing import Process
import time
def func(name):
 print("work start:%s"% time.ctime())
 time.sleep(2)
 print("work end:%s"% time.ctime())

if __name__ == "__main__":
 p = Process(target=func,args=('kebi',))
 p.daemon = True #父进程终止后自动终止,不能产生新进程,必须在start()之前设置
 p.start()
 print("this is over")

#执行结果
this is over

设置了daemon属性又想执行完的方法:

import time
def func(name):
 print("work start:%s"% time.ctime())
 time.sleep(2)
 print("work end:%s"% time.ctime())

if __name__ == "__main__":
 p = Process(target=func,args=('kebi',))
 p.daemon = True
 p.start()
 p.join() #执行完前面的代码再执行后面的
 print("this is over")

#执行结果
work start:Thu Nov 30 16:18:39 2017
work end:Thu Nov 30 16:18:41 2017
this is over

5.join():上面的代码执行完毕之后,才会执行后i面的代码。

先看一个例子:

from multiprocessing import Process
import time,os,random
def func(name,hour):
 print("A lifelong friend:%s,%s"% (name,os.getpid()))
 time.sleep(hour)
 print("Good bother:%s"%name)
if __name__ == "__main__":
 p = Process(target=func,args=('kebi',2))
 p1 = Process(target=func,args=('maoxian',1))
 p2 = Process(target=func,args=('xiaoniao',3))
 p.start()
 p1.start()
 p2.start()
 print("this is over")

执行结果:

this is over #最后执行,最先打印,说明start()只是开启进程,并不是说一定要执行完
A lifelong friend:kebi,12048
A lifelong friend:maoxian,8252
A lifelong friend:xiaoniao,6068
Good bother:maoxian #最先打印,第二位执行
Good bother:kebi
Good bother:xiaoniao

添加join()

from multiprocessing import Process
import time,os,random
def func(name,hour):
 print("A lifelong friend:%s,%s"% (name,os.getpid()))
 time.sleep(hour)
 print("Good bother:%s"%name)
start = time.time()
if __name__ == "__main__":
 p = Process(target=func,args=('kebi',2))
 p1 = Process(target=func,args=('maoxian',1))
 p2 = Process(target=func,args=('xiaoniao',3))
 p.start()
 p.join() #上面的代码执行完毕之后,再执行后面的
 p1.start()
 p1.join()
 p2.start()
 p2.join()
 print("this is over")
 print(time.time() - start)
#执行结果
A lifelong friend:kebi,14804
Good bother:kebi
A lifelong friend:maoxian,11120
Good bother:maoxian
A lifelong friend:xiaoniao,10252 #每个进程执行完了,才会执行下一个
Good bother:xiaoniao
this is over
6.497815370559692 #2+1+3+主程序执行时间

改变一下位置

from multiprocessing import Process
import time,os,random
def func(name,hour):
 print("A lifelong friend:%s,%s"% (name,os.getpid()))
 time.sleep(hour)
 print("Good bother:%s"%name)
start = time.time()
if __name__ == "__main__":
 p = Process(target=func,args=('kebi',2))
 p1 = Process(target=func,args=('maoxian',1))
 p2 = Process(target=func,args=('xiaoniao',3))
 p.start()
 p1.start()
 p2.start()
 p.join() #需要2秒
 p1.join() #到这时已经执行完
 p2.join() #已经执行了2秒,还要1秒
 print("this is over")
 print(time.time() - start)
#执行结果
A lifelong friend:kebi,13520
A lifelong friend:maoxian,11612
A lifelong friend:xiaoniao,17064 #几乎是同时开启执行
Good bother:maoxian
Good bother:kebi
Good bother:xiaoniao
this is over
3.273620367050171 #以最长时间的为主

6.其它属性和方法

from multiprocessing import Process
import time
def func(name):
 print("work start:%s"% time.ctime())
 time.sleep(2)
 print("work end:%s"% time.ctime())

if __name__ == "__main__":
 p = Process(target=func,args=('kebi',))
 p.start()
 p.terminate() #将进程杀死,而且必须放在start()后面,与daemon的功能类似

#执行结果
this is over
from multiprocessing import Process
import time
def func(name):
 print("work start:%s"% time.ctime())
 time.sleep(2)
 print("work end:%s"% time.ctime())

if __name__ == "__main__":
 p = Process(target=func,args=('kebi',))
 # p.daemon = True
 print(p.is_alive())
 p.start()
 print(p.name) #获取进程的名字
 print(p.pid) #获取进程的pid
 print(p.is_alive()) #判断进程是否存在
 print("this is over")

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python,多进程,编程

帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。