帝王谷资源网 Design By www.wdxyy.com

本文实例为大家分享了python实现最速下降法的具体代码,供大家参考,具体内容如下

代码:

from sympy import *
import numpy as np
def backtracking_line_search(f,df,x,x_k,p_k,alpha0):
  rho=0.5
  c=10**-4
  alpha=alpha0
  replacements1=zip(x,x_k)
  replacements2=zip(x,x_k+alpha*p_k)
  f_k=f.subs(replacements1)
  df_p=np.dot([df_.subs(replacements1) for df_ in df],p_k)
  while f.subs(replacements2)>f_k+c*alpha*df_p:
    alpha=rho*alpha
    replacements2 = zip(x, x_k +alpha * p_k)
  return alpha
def stepest_line_search(f,x,x0,alpha0):
  df = [diff(f, x_) for x_ in x]
  x_k=x0
  alpha=alpha0
  replacements=zip(x,x_k)
  len_df = sqrt(np.sum([df_.subs(replacements) ** 2 for df_ in df]))
  while len_df>1e-6:
    p_k=-1*np.array([df_.subs(replacements) for df_ in df])
    alpha = backtracking_line_search(f, df, x, x_k, p_k, alpha)
    x_k=x_k+alpha*p_k
    replacements = zip(x, x_k)
    len_df=np.sum([df_.subs(replacements)**2 for df_ in df])
  return x_k
if __name__=="__main__":
  init_printing(use_unicode=True)
  x1 = symbols("x1")
  x2 = symbols("x2")
  x = np.array([x1, x2])
  f = 100 * (x2 - x1 ** 2)**2 + (1 - x1) ** 2
  ans=stepest_line_search(f, x, np.array([1.2, 1]), 1)
  print "the minimal value in point:",ans

分析:

这个采用的是backtracking line search来寻找alpha。

python实现最速下降法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python,最速下降法

帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。