帝王谷资源网 Design By www.wdxyy.com
1:数据源
Hollywood Movie Dataset: 好莱坞2006-2011数据集
实验目的: 实现 统计2006-2011的数据综合统计情况,进行数据可视化
gitee地址:https://gitee.com/dgwcode/an_example_of_py_learning/tree/master/MovieViwer
1.数据例子:
Film ,Major Studio,Budget 300,Warner Bros, 300,Warner Bros.,65 3:10 to Yuma,Lionsgate,48 Days of Night,Independent,32 Across the Universe,Independent,45 Alien vs. Predator -- Requiem,Fox,40 Alvin and the Chipmunks,Fox,70 American Gangster,Universal,10 Bee Movie,Paramount,15 Beowulf,Paramount,15 Blades of Glory,Paramount,61
2: 环境pycharm新建Flask项目
3 数据处理:
Film ,Major Studio,Budget 为数据的三个标题 截断这三个数据就行
import pandas as pd from threading import Timer import math # coding=utf-8 def getTotalData(): data1 = pd.read_csv('static/1.csv'); data2 = pd.read_csv('static/2.csv'); data3 = pd.read_csv('static/3.csv'); data4 = pd.read_csv('static/4.csv'); data5 = pd.read_csv('static/5.csv'); datadic1 = []; datadic2 = []; datadic3 = []; datadic4 = []; datadic5 = []; # 处理数据.csv for x, y in zip(data1['Major Studio'], data1['Budget']): datadic1.append((x, y)) for x, y in zip(data2['Major Studio'], data2['Budget']): datadic2.append((x, y)) for x, y in zip(data3['Lead Studio'], data3['Budget']): datadic3.append((x, y)) for x, y in zip(data4['Lead Studio'], data4['Budget']): datadic4.append((x, y)) for x, y in zip(data5['Lead Studio'], data5['Budget']): datadic5.append((x, y)) totaldata = []; totaldata.append(datadic1); totaldata.append(datadic2); totaldata.append(datadic3); totaldata.append(datadic4); totaldata.append(datadic5); return totaldata; indexx = 0; curindex = 0; end = 5; returnData = dict(); # 定时处理数据 def dataPre(): global indexx, end, curindex, flag, returnData; totalData = getTotalData(); # list[map] # x = len(totalData[0]) + totalData[1].len() + totalData[2].len() + totalData[3].len() + totalData[4].len(); data = totalData[indexx]; # init # print(curindex, end, indexx) # print(len(data)) for k, v in data[curindex:end]: if v == "nan" or math.isnan(v):# 截断 k v中 nan continue; if returnData.get(k, -1) == -1: print(k, v); returnData[k] = v; else: returnData[k] = returnData[k] + v; print(len(returnData)) if end < len(data) - 20: curindex = end; end = end + 20; if end >= len(data) - 20: indexx += 1; curindex = 0; end = 20; t = Timer(2, dataPre) t.start() print(returnData.keys(), end='\n') return returnData; if __name__ == "__main__": dataPre();
4:实际程序入口
from flask import Flask, render_template from pyecharts.charts import Bar from pyecharts import options as opts import math import dealdata from threading import Timer from pyecharts.globals import ThemeType app = Flask(__name__, static_folder="templates") @app.route('/') def hello_world(): dataPre();# 数据入口 return render_template("index.html") # 定义全局索引 indexx = 0; curindex = 0; end = 5; returnData = dict(); # 定时处理数据 def dataPre(): global indexx, end, curindex, flag, returnData; totalData = dealdata.getTotalData(); # list[map] # x = len(totalData[0]) + totalData[1].len() + totalData[2].len() + totalData[3].len() + totalData[4].len(); data = totalData[indexx]; #print(totalData) # init # print(curindex, end, indexx) # print(len(data)) for k, v in data[curindex:end]: if v == "nan" or math.isnan(v): # 截断 k v中 nan continue; if returnData.get(k, -1) == -1: returnData[k] = v; else: returnData[k] = returnData[k] + v; print(len(returnData)) # 反应长度关系 if end < len(data) - 15: # 参数为截断的项数 与前端时间要对应 curindex = end; end = end + 15; if end >= len(data) - 15: indexx += 1; curindex = 0; end = 15; t = Timer(1, dataPre) t.start() #print(returnData, end='\n') def bar_reversal_axis() -> Bar: global returnData; #print(sorted(returnData.items(), key=lambda x: x[1])) sorted(returnData.items(), key=lambda x: x[1],reverse=False) #print(returnData.keys()) c = ( Bar({"theme": ThemeType.MACARONS}) .add_xaxis(list(returnData.keys())) .add_yaxis("电影公司名称:",list(returnData.values()),color="#BF3EFF") .reversal_axis() .set_series_opts(label_opts=opts.LabelOpts(position="right",color="#BF3EFF", font_size=12)) .set_global_opts(title_opts=opts.TitleOpts(title="2007-2011好莱坞电影最受欢迎公司", pos_left='60%',subtitle="当前"+str(2006+indexx)+"年")) ) return c; @app.route("/barChart") def index(): c = bar_reversal_axis(); return c.dump_options_with_quotes(); if __name__ == '__main__': app.run();
5: 前端
<html> <head> <meta charset="UTF-8"> <title>Awesome-pyecharts</title> <script src="/UploadFiles/2021-04-08/jquery.min.js">6: 扩展资料
https://github.com/pyecharts/pyecharts/tree/master/pyecharts/render/templates
{% import 'macro' as macro %} <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>{{ chart.page_title }}</title> {{ macro.render_chart_dependencies(chart) }} </head> <body> <div id="{{ chart.chart_id }}" style="width:{{ chart.width }}; height:{{ chart.height }};"></div> <script> var canvas_{{ chart.chart_id }} = document.createElement('canvas'); var mapChart_{{ chart.chart_id }} = echarts.init( canvas_{{ chart.chart_id }}, '{{ chart.theme }}', {width: 4096, height: 2048, renderer: '{{ chart.renderer }}'}); {% for js in chart.js_functions.items %} {{ js }} {% endfor %} var mapOption_{{ chart.chart_id }} = {{ chart.json_contents }}; mapChart_{{ chart.chart_id }}.setOption(mapOption_{{ chart.chart_id }}); var chart_{{ chart.chart_id }} = echarts.init( document.getElementById('{{ chart.chart_id }}'), '{{ chart.theme }}', {renderer: '{{ chart.renderer }}'}); var options_{{ chart.chart_id }} = { "globe": { "show": true, "baseTexture": mapChart_{{ chart.chart_id }}, shading: 'lambert', light: { ambient: { intensity: 0.6 }, main: { intensity: 0.2 } } }}; chart_{{ chart.chart_id }}.setOption(options_{{ chart.chart_id }}); </script> </body> </html>以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com
暂无评论...
更新日志
2024年12月30日
2024年12月30日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]