帝王谷资源网 Design By www.wdxyy.com
我就废话不多说啦,直接上代码吧!
target = [1.5, 2.1, 3.3, -4.7, -2.3, 0.75] prediction = [0.5, 1.5, 2.1, -2.2, 0.1, -0.5] error = [] for i in range(len(target)): error.append(target[i] - prediction[i]) print("Errors: ", error) print(error) squaredError = [] absError = [] for val in error: squaredError.append(val * val)#target-prediction之差平方 absError.append(abs(val))#误差绝对值 print("Square Error: ", squaredError) print("Absolute Value of Error: ", absError) print("MSE = ", sum(squaredError) / len(squaredError))#均方误差MSE from math import sqrt print("RMSE = ", sqrt(sum(squaredError) / len(squaredError)))#均方根误差RMSE print("MAE = ", sum(absError) / len(absError))#平均绝对误差MAE targetDeviation = [] targetMean = sum(target) / len(target)#target平均值 for val in target: targetDeviation.append((val - targetMean) * (val - targetMean)) print("Target Variance = ", sum(targetDeviation) / len(targetDeviation))#方差 print("Target Standard Deviation = ", sqrt(sum(targetDeviation) / len(targetDeviation)))#标准差
补充拓展:回归模型指标:MSE 、 RMSE、 MAE、R2
sklearn调用
# 测试集标签预测 y_predict = lin_reg.predict(X_test) # 衡量线性回归的MSE 、 RMSE、 MAE、r2 from math import sqrt from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score print("mean_absolute_error:", mean_absolute_error(y_test, y_predict)) print("mean_squared_error:", mean_squared_error(y_test, y_predict)) print("rmse:", sqrt(mean_squared_error(y_test, y_predict))) print("r2 score:", r2_score(y_test, y_predict))
原生实现
# 测试集标签预测 y_predict = lin_reg.predict(X_test) # 衡量线性回归的MSE 、 RMSE、 MAE mse = np.sum((y_test - y_predict) ** 2) / len(y_test) rmse = sqrt(mse) mae = np.sum(np.absolute(y_test - y_predict)) / len(y_test) r2 = 1-mse/ np.var(y_test) print("mse:",mse," rmse:",rmse," mae:",mae," r2:",r2)
相关公式
MSE
RMSE
MAE
R2
以上这篇python之MSE、MAE、RMSE的使用就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com
暂无评论...
更新日志
2024年12月30日
2024年12月30日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]