reshape(shape) : 不改变数组元素,返回一个shape形状的数组,原数组不变。是对每行元素进行处理
resize(shape) : 与.reshape()功能一致,但修改原数组
In [1]: a = np.arange(20) #原数组不变 In [2]: a.reshape([4,5]) Out[2]: array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]) In [3]: a Out[3]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]) #修改原数组 In [4]: a.resize([4,5]) In [5]: a Out[5]: array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]])
.swapaxes(ax1,ax2) : 将数组n个维度中两个维度进行调换,不改变原数组
In [6]: a.swapaxes(1,0) Out[6]: array([[ 0, 5, 10, 15], [ 1, 6, 11, 16], [ 2, 7, 12, 17], [ 3, 8, 13, 18], [ 4, 9, 14, 19]])
.flatten() : 对数组进行降维,返回折叠后的一维数组,原数组不变
In [7]: a.flatten() Out[7]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19])
将多个二维数组合并为一个三维数组
方法一:
对于两个(或者多个)同一维度的矩阵,直接利用np.array()重新构造一个array,这样可以变相起到扩展维数的作用。例如:
import numpy as np a = np.array([[1,2,3],[4,5,6]]) b = np.array([[2,2,3],[4,5,6]]) c = np.array([[3,2,3],[4,5,6]]) print('矩阵a:\n',a) print('维数:',a.shape) com = np.array([a,b,c]) print('合并矩阵:\n',com) print('维数:',com.shape) 输出结果为: 矩阵a: [[1 2 3] [4 5 6]] 维数: (2, 3) 合并矩阵: [[[1 2 3] [4 5 6]] [[2 2 3] [4 5 6]] [[3 2 3] [4 5 6]]] 维数: (3, 2, 3)
方法二:
但是,如果两个array,使用方法一时会出现如下结果:
import numpy as np aa = np.array([[[1,2,3],[4,5,6]],[[2,2,3],[4,5,6]],[[3,2,3],[4,5,6]]]) a = np.array([[4,2,3],[4,5,6]]) com = np.array([aa,a]) print('合并矩阵:\n',com) print('维数:',com.shape) 输出结果: 合并矩阵: [array([[[1, 2, 3], [4, 5, 6]], [[2, 2, 3], [4, 5, 6]], [[3, 2, 3], [4, 5, 6]]]) array([[4, 2, 3], [4, 5, 6]])] 维数: (2,)
可以看到:输出的维数不对,以上方法就不适用了。
那么,我们就需要利用np.append和array.reshape()函数对数组进行拼接之后重组,具体实现如下:
import numpy as np aa = np.array([[[1,2,3],[4,5,6]],[[2,2,3],[4,5,6]],[[3,2,3],[4,5,6]]]) a = np.array([[4,2,3],[4,5,6]]) data = np.append(aa,a)#先拼接成一个行向量 print(data) dim = aa.shape#获取原矩阵的维数 print('原矩阵维数:',dim) data1 = data.reshape(dim[0]+1,dim[1],dim[2])#再通过原矩阵的维数重新组合 print('合并矩阵:\n',data1) print('维数:',data1.shape)
现在来看一下用reshape将二维数据升为三维后的数据分布情况:
import numpy as np b = np.arange(36).reshape((6,6)) b1 = b.reshape(2,3,6)
b的元素:
b1的元素:
可以看到,原来6*6的矩阵被分为了2个3*6的矩阵。每一行的数据分布并没有改变,只是将前3行划为一个维度,然后将后三行划为另一个维度。
b1.reshape(6,6)
如果用这条命令,则数据又被还原了回去,与b的一样。
b1.reshape(3,12)
如果用的是reshape(3,12),则相当于将数据首先拉伸为1维的,然后再将一维数据重组为3*12
方法三:
相比于前两种方法,这种方法可谓“曲线救国”之典范,具体思路是:先转化成list,拼接后再转化回去。
这是因为list中的append()函数可以在添加函数的时候不改变原来list的维度。虽然没有对这种方法进行一个速度测试,但直觉来看时间复杂度挺高的,建议慎用。
aa = np.array([[[1,2,3],[4,5,6]],[[2,2,3],[4,5,6]],[[3,2,3],[4,5,6]]]) a = np.array([[4,2,3],[4,5,6]]) #将array转换成list aa = aa.tolist(aa) a = a.list(a) aa.append(a)#注意与方法二中np.append()用法的区别 com = np.array(aa) print(com.shape) 输出结果: 合并矩阵: [[[1 2 3] [4 5 6]] [[2 2 3] [4 5 6]] [[3 2 3] [4 5 6]] [[4 2 3] [4, 5, 6]]] 维数: (4,2,3)
这里注意:
两种类型的相互转换函数:
array转list:a = a.tolist()
list转array:a =np.array(a)
以上这篇Python reshape的用法及多个二维数组合并为三维数组的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]