1. 关键术语描述
kernel
在神经网络模型中,每个node都定义了自己需要完成的操作,比如要做卷积、矩阵相乘等。
可以将kernel看做是一段能够跑在具体硬件设备上的算法程序,所以即使同样的2D卷积算法,我们有基于gpu的Convolution 2D kernel实例、基于cpu的Convolution 2D kernel实例。
device
负责运行kernel的具体硬件设备抽象。每个device实例,对应系统中一个具体的处理器硬件,比如gpu:0 device, gpu:1 device, cpu:0 device。一般来说,每个device实例同时包括处理器资源、内存资源。device的抽象支持硬件设备提供的并行处理能力。
2. device是什么
为方便描述,下面我们把在tensorflow里面运行的神经网络模型都统一称为graph。
我们知道,tensorflow主要针对的是跨硬件平台、分布式、并发运行的场景,参与运算的每个硬件资源,我们都抽象为device实例,便于管理。
device的主要职责:
管理处理器资源,为支持device内部的并行计算,进一步将其抽象为thread pool或streams:
cpu:使用thread pool来管理,thread之间可支持不同程度的并行计算能力
gpu: 针对nvidia gpu, 使用cuda streams来管理,根据不同的gpu型号,可支持不同数量的stream做并行计算
管理内存资源:为kernel的运行,分配和释放内存,进一步抽象为Allocator及其各种子类的实例来管理。
主机内存:
cpu kernel 计算时需要的内存。
gpu kernel的输出结果如果要放置到主机内存中时,gpu kernel也需要申请主机内存。
显存: gpu kernel 计算时需要的内存。
3. device的种类及应用场景
由于device要抽象的设备种类较多,我们主要描述一下本地运行的cpu device、gpu device实例类型。先用一个UML图来表示一下各种device抽象类的关系:
可以看到,cpu device实例使用的类是GPUCompatibleCPUDevice,主要是在ThreadPoolDevice的基础上,增加了gpu<-> cpu之间内存传输数据的优化措施。
gpu device实例使用的类是 GPUDevice 。
4. device实例的关键数据结构
我们以常用的cpu device,gpu device为例, 用下图描述一下device实例的关键数据结构:
可以看到每个device实例内部都具备并行处理的能力:
GPUCompatibleCPUDevice实例 将 cpu 的计算资源抽象为thread pool,以支持多thread之间的并发执行; 将主机内存抽象为 CPUAllocator 实例来进行管理,为cpu kernel、gpu kernel提供主机内存的申请、释放功能; GPUDevice实例 将gpu的计算资源抽象为streams, 由于目前只支持NVIDIA的gpu,所以这里我们可以看作抽象为cuda streams,多个cuda streams之间的计算可以并发处理; 通过GPUBFCAllocator实例来管理显存,为gpu kernel提供显存的申请、释放功能。
5. device实例的创建
系统中可用的device实例,由session发起创建,归属于session实例。
device的创建,使用Factory 设计模式,session会调用所有注册的device factory,逐一产出 符合条件的device实例。
以DirectSession实例创建gpu device、cpu device为例,具体流程如下图所示。
为方便结合代码阅读,已包含主要的类、函数调用路径:
可以看到,最终产出 的gpu device、cpu device实例,都会保存至DirectSession实例的 devices_ 表中,由DirectSession实例进行分配和使用。
6. 在graph运行阶段device的使用
在graph的创建阶段,session为每个node分配一个具体的device实例,同时为每个node创建一个具体的kernel实例,这个kernel实例将会运行在分配的device实例上。(参见Tensorflow 核心流程剖析 2 – 神经网络模型的创建和分割)
接下来,在graph的运行阶段,session会依次处理graph中的node,调度node所分配的device实例,去运行node的kernel实例。
每个kernel 在运行时,会向其分配的device,申请需要的计算资源、内存资源等,完成具体的运算操作。
上述流程如下图所示。
为方便结合代码阅读,已包含主要的类、函数调用路径:
以上这篇对Tensorflow中Device实例的生成和管理详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]