帝王谷资源网 Design By www.wdxyy.com
如何将训练好的网络进行保存,我们可以用pickle或cPickle来保存Keras模型,同时我们可以用下面的方法:
一、保存整个模型
model.save(filepath)将Keras模型和权重保存在一个HDF5文件中,该文件将包含:
模型的结构
模型的权重
训练配置(损失函数,优化器,准确率等)
优化器的状态,以便于从上次训练中断的地方
前提是已经安装python的h5py包.
from keras.models import load_model
当我们再一次使用时可以model.load_model(filepath)载入模型
二、保存模型的结构
model.to_jason()将模型序列化保存为json文件,里面记录了网络的整体结构, 各个层的参数设置等信息. 将json字符串保存到文件.
open(‘filename.json','w').write(json_string) from keras.models import model_form_json json_string=open('filename.json').read()
model=model_from_json(json_string)
除了json格式,还可以保存为yaml格式的字符串,形式与JSON一样
三、保存模型权重
model.save_weights()
我们经过调参后网络的输出精度比较满意后,可以将训练好的网络权重参数保存下 来.可通过下面的代码利用HDF5进行保存
model.save_weights(‘model_weights.h5')
使用的时加载模型:
model.load_weights(‘model_weights.h5')
如果你需要加载权重到不同的网络结构(有些层一样)中,例如fine-tune或transfer-learning,你可以通过层名字来加载模型:
model.load_weights('my_model_weights.h5', by_name=True)
因此我们建模时最好给每个层定义名字
以上就是我们保存模型的三种方法,需要我们在实践时多总结。
这篇基于keras 模型、结构、权重保存的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
keras,模型,结构,权重
帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com
暂无评论...
更新日志
2025年01月06日
2025年01月06日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]