帝王谷资源网 Design By www.wdxyy.com
在test.py中可以通过如下代码直接生成带weight的pb文件,也可以通过tf官方的freeze_graph.py将ckpt转为pb文件。
constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def,['net_loss/inference/encode/conv_output/conv_output']) with tf.gfile.FastGFile('net_model.pb', mode='wb') as f: f.write(constant_graph.SerializeToString())
tf1.0中通过带weight的pb文件与get_tensor_by_name函数可以获取每一层的输出
import os import os.path as ops import argparse import time import math import tensorflow as tf import glob import numpy as np import matplotlib.pyplot as plt import cv2 os.environ["CUDA_VISIBLE_DEVICES"] = "-1" gragh_path = './model.pb' image_path = './lvds1901.JPG' inputtensorname = 'input_tensor:0' tensorname = 'loss/inference/encode/resize_images/ResizeBilinear' filepath='./net_output.txt' HEIGHT=256 WIDTH=256 VGG_MEAN = [103.939, 116.779, 123.68] with tf.Graph().as_default(): graph_def = tf.GraphDef() with tf.gfile.GFile(gragh_path, 'rb') as fid: serialized_graph = fid.read() graph_def.ParseFromString(serialized_graph) tf.import_graph_def(graph_def, name='') image = cv2.imread(image_path) image = cv2.resize(image, (WIDTH, HEIGHT), interpolation=cv2.INTER_CUBIC) image_np = np.array(image) image_np = image_np - VGG_MEAN image_np_expanded = np.expand_dims(image_np, axis=0) with tf.Session() as sess: ops = tf.get_default_graph().get_operations() tensor_name = tensorname + ':0' tensor_dict = tf.get_default_graph().get_tensor_by_name(tensor_name) image_tensor = tf.get_default_graph().get_tensor_by_name(inputtensorname) output = sess.run(tensor_dict, feed_dict={image_tensor: image_np_expanded}) ftxt = open(filepath,'w') transform = output.transpose(0, 3, 1, 2) transform = transform.flatten() weight_count = 0 for i in transform: if weight_count % 10 == 0 and weight_count != 0: ftxt.write('\n') ftxt.write(str(i) + ',') weight_count += 1 ftxt.close()
以上这篇TensorFlow实现打印每一层的输出就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com
暂无评论...
更新日志
2025年01月06日
2025年01月06日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]