帝王谷资源网 Design By www.wdxyy.com
如下所示:
import numpy as np from torchvision.transforms import Compose, ToTensor from torch import nn import torch.nn.init as init def transform(): return Compose([ ToTensor(), # Normalize((12,12,12),std = (1,1,1)), ]) arr = range(1,26) arr = np.reshape(arr,[5,5]) arr = np.expand_dims(arr,2) arr = arr.astype(np.float32) # arr = arr.repeat(3,2) print(arr.shape) arr = transform()(arr) arr = arr.unsqueeze(0) print(arr) conv1 = nn.Conv2d(1, 1, 3, stride=1, bias=False, dilation=1) # 普通卷积 conv2 = nn.Conv2d(1, 1, 3, stride=1, bias=False, dilation=2) # dilation就是空洞率,即间隔 init.constant_(conv1.weight, 1) init.constant_(conv2.weight, 1) out1 = conv1(arr) out2 = conv2(arr) print('standare conv:\n', out1.detach().numpy()) print('dilated conv:\n', out2.detach().numpy())
输出:
(5, 5, 1) tensor([[[[ 1., 2., 3., 4., 5.], [ 6., 7., 8., 9., 10.], [11., 12., 13., 14., 15.], [16., 17., 18., 19., 20.], [21., 22., 23., 24., 25.]]]]) standare conv: [[[[ 63. 72. 81.] [108. 117. 126.] [153. 162. 171.]]]] dilated conv: [[[[117.]]]]
以上这篇PyTorch 普通卷积和空洞卷积实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com
暂无评论...
更新日志
2025年01月08日
2025年01月08日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]