帝王谷资源网 Design By www.wdxyy.com
普通卷积
使用nn.Conv2d(),一般还会接上BN和ReLu
参数量NNCin*Cout+Cout(如果有bias,相对来说表示对参数量影响很小,所以后面不考虑)
class ConvBNReLU(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True): super(ConvBNReLU, self).__init__() self.op = nn.Sequential( nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, bias=False), nn.BatchNorm2d(C_out, eps=1e-3, affine=affine), nn.ReLU(inplace=False) ) def forward(self, x): return self.op(x)
深度可分离卷积depthwise separable convolution
卷积操作可以分为NN 的Depthwise卷积(不改变通道数)和11的Pointwise卷积(改变为输出通道数),同样后接BN,ReLU。参数量明显减少
参数量:
NNCin+Cin11*Cout
class SepConv(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True): super(SepConv, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, groups=C_in, bias=False), nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), nn.BatchNorm2d(C_out, eps=1e-3, affine=affine) ) def forward(self, x): return self.op(x)
空洞卷积dilated convolution
空洞卷积(dilated convolution)是针对图像语义分割问题中下采样会降低图像分辨率、丢失信息而提出的一种卷积思路。利用添加空洞扩大感受野。
参数量不变,但感受野增大(可结合深度可分离卷积实现)
class DilConv(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True): super(DilConv, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False), nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), nn.BatchNorm2d(C_out, eps=1e-3, affine=affine), ) def forward(self, x): return self.op(x)
Identity
这个其实不算卷积操作,但是在实现跨层传递捷径
class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x
以上这篇Pytorch实现各种2d卷积示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
Pytorch,2d,卷积
帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com
暂无评论...
更新日志
2025年01月08日
2025年01月08日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]