帝王谷资源网 Design By www.wdxyy.com
我就废话不多说,直接上代码吧!
# -*- coding: utf-8 -*- import cv2 import numpy as np from find_obj import filter_matches,explore_match from matplotlib import pyplot as plt def getSift(): ''' 得到并查看sift特征 ''' img_path1 = '../../data/home.jpg' #读取图像 img = cv2.imread(img_path1) #转换为灰度图 gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #创建sift的类 sift = cv2.SIFT() #在图像中找到关键点 也可以一步计算#kp, des = sift.detectAndCompute kp = sift.detect(gray,None) print type(kp),type(kp[0]) #Keypoint数据类型分析 http://www.cnblogs.com/cj695/p/4041399.html print kp[0].pt #计算每个点的sift des = sift.compute(gray,kp) print type(kp),type(des) #des[0]为关键点的list,des[1]为特征向量的矩阵 print type(des[0]), type(des[1]) print des[0],des[1] #可以看出共有885个sift特征,每个特征为128维 print des[1].shape #在灰度图中画出这些点 img=cv2.drawKeypoints(gray,kp) #cv2.imwrite('sift_keypoints.jpg',img) plt.imshow(img),plt.show() def matchSift(): ''' 匹配sift特征 ''' img1 = cv2.imread('../../data/box.png', 0) # queryImage img2 = cv2.imread('../../data/box_in_scene.png', 0) # trainImage sift = cv2.SIFT() kp1, des1 = sift.detectAndCompute(img1, None) kp2, des2 = sift.detectAndCompute(img2, None) # 蛮力匹配算法,有两个参数,距离度量(L2(default),L1),是否交叉匹配(默认false) bf = cv2.BFMatcher() #返回k个最佳匹配 matches = bf.knnMatch(des1, des2, k=2) # cv2.drawMatchesKnn expects list of lists as matches. #opencv2.4.13没有drawMatchesKnn函数,需要将opencv2.4.13\sources\samples\python2下的common.py和find_obj文件放入当前目录,并导入 p1, p2, kp_pairs = filter_matches(kp1, kp2, matches) explore_match('find_obj', img1, img2, kp_pairs) # cv2 shows image cv2.waitKey() cv2.destroyAllWindows() def matchSift3(): ''' 匹配sift特征 ''' img1 = cv2.imread('../../data/box.png', 0) # queryImage img2 = cv2.imread('../../data/box_in_scene.png', 0) # trainImage sift = cv2.SIFT() kp1, des1 = sift.detectAndCompute(img1, None) kp2, des2 = sift.detectAndCompute(img2, None) # 蛮力匹配算法,有两个参数,距离度量(L2(default),L1),是否交叉匹配(默认false) bf = cv2.BFMatcher() #返回k个最佳匹配 matches = bf.knnMatch(des1, des2, k=2) # cv2.drawMatchesKnn expects list of lists as matches. #opencv3.0有drawMatchesKnn函数 # Apply ratio test # 比值测试,首先获取与A 距离最近的点B(最近)和C(次近),只有当B/C # 小于阈值时(0.75)才被认为是匹配,因为假设匹配是一一对应的,真正的匹配的理想距离为0 good = [] for m, n in matches: if m.distance < 0.75 * n.distance: good.append([m]) img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good[:10], None, flags=2) cv2.drawm plt.imshow(img3), plt.show() matchSift()
以上这篇opencv-python 提取sift特征并匹配的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com
暂无评论...
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
2025年01月09日
2025年01月09日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]