帝王谷资源网 Design By www.wdxyy.com
之前自己一直使用random中 randint生成随机数以及使用for将列表中的数据遍历一次。
现在有个需求需要将列表的次序打乱,或者也可以这样理解:
【需求】将一个容器中的数据每次随机逐个遍历一遍。
random.shuffle()方法提供了完美的解决方案。
不会生成新的列表,只是将原列表的次序打乱
# shuffle()使用样例 import random x = [i for i in range(10)] print(x) random.shuffle(x) print(x)
源码及注释(个人翻译注释)
def shuffle(self, x, random=None): """Shuffle list x in place, and return None. 原位打乱列表,不生成新的列表。 Optional argument random is a 0-argument function returning a random float in [0.0, 1.0); if it is the default None, the standard random.random will be used. 可选参数random是一个从0到参数的函数,返回[0.0,1.0)中的随机浮点; 如果random是缺省值None,则将使用标准的random.random()。 """ if random is None: randbelow = self._randbelow for i in reversed(range(1, len(x))): # pick an element in x[:i+1] with which to exchange x[i] j = randbelow(i + 1) x[i], x[j] = x[j], x[i] else: _int = int for i in reversed(range(1, len(x))): # pick an element in x[:i+1] with which to exchange x[i] j = _int(random() * (i + 1)) x[i], x[j] = x[j], x[i]
random 中其他的方法
class Random(_random.Random): ## -------------------- integer methods ------------------- def randrange(self, start, stop=None, step=1, _int=int): def randint(self, a, b): def _randbelow(self, n, int=int, maxsize=1 << BPF, type=type, Method=_MethodType, BuiltinMethod=_BuiltinMethodType): ## -------------------- sequence methods ------------------- def choice(self, seq): def shuffle(self, x, random=None): def sample(self, population, k): def choices(self, population, weights=None, *, cum_weights=None, k=1): ## -------------------- uniform distribution ------------------- def uniform(self, a, b): ## -------------------- triangular -------------------- def triangular(self, low=0.0, high=1.0, mode=None): ## -------------------- normal distribution -------------------- def normalvariate(self, mu, sigma): ## -------------------- lognormal distribution -------------------- def lognormvariate(self, mu, sigma): ## -------------------- exponential distribution -------------------- def expovariate(self, lambd): ## -------------------- von Mises distribution -------------------- def vonmisesvariate(self, mu, kappa): ## -------------------- gamma distribution -------------------- def gammavariate(self, alpha, beta): ## -------------------- Gauss (faster alternative) -------------------- def gauss(self, mu, sigma): def betavariate(self, alpha, beta): ## -------------------- Pareto -------------------- def paretovariate(self, alpha): ## -------------------- Weibull -------------------- def weibullvariate(self, alpha, beta):
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年02月08日
2025年02月08日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]