摘要
数据分析与建模的时候大部分时间在数据准备上,包括对数据的加载、清理、转换以及重塑。pandas提供了一组高级的、灵活的、高效的核心函数,能够轻松的将数据规整化。这节主要对pandas合并数据集的merge函数进行详解。(用过SQL或其他关系型数据库的可能会对这个方法比较熟悉。)码字不易,喜欢请点赞!!!
1.merge函数的参数一览表
2.创建两个DataFrame
3.pd.merge()方法设置连接字段。
默认参数how是inner内连接,并且会按照相同的字段key进行合并,即等价于on=‘key'
。
也可以显示的设置on=‘key',这里也推荐这么做。
当两边合并字段不同时,可以使用left_on和right_on参数设置合并字段。当然这里合并字段都是key所以left_on和right_on参数值都是key。
4.pd.merge()方法设置连接方法。
主要包括inner(内连接)、outer(外链接)、left(左连接)、right(右连接)。
参数how默认值是inner内连接,上面的都是采用内连接,连接两边都有的值。
当采用outer外连接时,会取并集,并用NaN填充。
外连接其实左连接和右连接的并集。左连接是左侧DataFrame取全部数据,右侧DataFrame匹配左侧DataFrame。(右连接right和左连接类似)
5.pd.merge()方法索引连接,以及重复列名命名。
pd.merge()方法可以通过设置left_index或者right_index的值为True来使用索引连接,例如这里df1使用data1当连接关键字,而df2使用索引当连接关键字。
从上面可以发现两个DataFrame中都有key列,merge合并之后,pandas会自动在后面加上(_x,_y)来区分,我们也可以通过设置suffixes来设置名字。
总结
以上所述是小编给大家介绍的详解Python3 pandas.merge用法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]