01. 装饰器语法糖
如果你接触 Python 有一段时间了的话,想必你对 @ 符号一定不陌生了,没错 @ 符号就是装饰器的语法糖。
它放在一个函数开始定义的地方,它就像一顶帽子一样戴在这个函数的头上。和这个函数绑定在一起。在我们调用这个函数的时候,第一件事并不是执行这个函数,而是将这个函数做为参数传入它头顶上这顶帽子,这顶帽子我们称之为装饰函数 或 装饰器。
你要问我装饰器可以实现什么功能?我只能说你的脑洞有多大,装饰器就有多强大。
装饰器的使用方法很固定:
- 先定义一个装饰函数(帽子)(也可以用类、偏函数实现)
- 再定义你的业务函数、或者类(人)
- 最后把这顶帽子带在这个人头上
装饰器的简单的用法有很多,这里举两个常见的。
- 日志打印器
- 时间计时器
02. 入门用法:日志打印器
首先是日志打印器。
它要实现的功能是
- 在函数执行前,先打印一行日志告知一下主人,我要执行函数了。
- 在函数执行完,也不能拍拍屁股就走人了,咱可是有礼貌的代码,再打印一行日志告知下主人,我执行完啦。
# 这是装饰函数 def logger(func): def wrapper(*args, **kw): print('我准备开始计算:{} 函数了:'.format(func.__name__)) # 真正执行的是这行。 func(*args, **kw) print('啊哈,我计算完啦。给自己加个鸡腿!!') return wrapper
假如,我的业务函数是,计算两个数之和。写好后,直接给它带上帽子。
@logger def add(x, y): print('{} + {} = {}'.format(x, y, x+y))
然后我们来计算一下。
add(200, 50)
快来看看输出了什么,神奇不?
我准备开始计算:add 函数了:
200 + 50 = 250
啊哈,我计算完啦。给自己加个鸡腿!
03. 入门用法:时间计时器
再来看看 时间计时器
实现功能:顾名思义,就是计算一个函数的执行时长。
# 这是装饰函数 def timer(func): def wrapper(*args, **kw): t1=time.time() # 这是函数真正执行的地方 func(*args, **kw) t2=time.time() # 计算下时长 cost_time = t2-t1 print("花费时间:{}秒".format(cost_time)) return wrapper
假如,我们的函数是要睡眠10秒。这样也能更好的看出这个计算时长到底靠不靠谱。
import time @timer def want_sleep(sleep_time): time.sleep(sleep_time) want_sleep(10)
来看看,输出。真的是10秒。
花费时间:10.0073800086975098秒
04. 进阶用法:带参数的函数装饰器
通过上面简单的入门,你大概已经感受到了装饰的神奇魅力了。
不过,装饰器的用法远不止如此。我们今天就要把这个知识点学透。
上面的例子,装饰器是不能接收参数的。其用法,只能适用于一些简单的场景。不传参的装饰器,只能对被装饰函数,执行固定逻辑。
如果你有经验,你一定经常在项目中,看到有的装饰器是带有参数的。
装饰器本身是一个函数,既然做为一个函数都不能携带函数,那这个函数的功能就很受限。只能执行固定的逻辑。这无疑是非常不合理的。而如果我们要用到两个内容大体一致,只是某些地方不同的逻辑。不传参的话,我们就要写两个装饰器。小明觉得这不能忍。
那么装饰器如何实现传参呢,会比较复杂,需要两层嵌套。
同样,我们也来举个例子。
我们要在这两个函数的执行的时候,分别根据其国籍,来说出一段打招呼的话。
def american(): print("I am from America.") def chinese(): print("我来自中国。")
在给他们俩戴上装饰器的时候,就要跟装饰器说,这个人是哪国人,然后装饰器就会做出判断,打出对应的招呼。
戴上帽子后,是这样的。
@say_hello("china") def chinese(): print("我来自中国。") @say_hello("america") def american(): print("I am from America.")
万事俱备,只差帽子了。来定义一下,这里需要两层嵌套。
def say_hello(contry): def wrapper(func): def deco(*args, **kwargs): if contry == "china": print("你好!") elif contry == "america": print('hello.') else: return # 真正执行函数的地方 func(*args, **kwargs) return deco return wrapper
执行一下
american() print("------------") chinese()
看看输出结果。
你好!
我来自中国。
------------
hello.
I am from America
emmmm,这很NB。。。
05. 高阶用法:不带参数的类装饰器
以上都是基于函数实现的装饰器,在阅读别人代码时,还可以时常发现还有基于类实现的装饰器。
基于类装饰器的实现,必须实现 __call__ 和 __init__两个内置函数。
- __init__ :接收被装饰函数
- __call__ :实现装饰逻辑。
class logger(object): def __init__(self, func): self.func = func def __call__(self, *args, **kwargs): print("[INFO]: the function {func}() is running..." .format(func=self.func.__name__)) return self.func(*args, **kwargs) @logger def say(something): print("say {}!".format(something)) say("hello")
执行一下,看看输出
[INFO]: the function say() is running...
say hello!
06. 高阶用法:带参数的类装饰器
上面不带参数的例子,你发现没有,只能打印INFO级别的日志,正常情况下,我们还需要打印DEBUG WARNING等级别的日志。 这就需要给类装饰器传入参数,给这个函数指定级别了。
带参数和不带参数的类装饰器有很大的不同。
- __init__ :不再接收被装饰函数,而是接收传入参数。
- __call__ :接收被装饰函数,实现装饰逻辑。
class logger(object): def __init__(self, level='INFO'): self.level = level def __call__(self, func): # 接受函数 def wrapper(*args, **kwargs): print("[{level}]: the function {func}() is running..." .format(level=self.level, func=func.__name__)) func(*args, **kwargs) return wrapper #返回函数 @logger(level='WARNING') def say(something): print("say {}!".format(something)) say("hello")
我们指定WARNING级别,运行一下,来看看输出。
[WARNING]: the function say() is running...
say hello!
07. 使用偏函数与类实现装饰器
绝大多数装饰器都是基于函数和闭包实现的,但这并非制造装饰器的唯一方式。
事实上,Python 对某个对象是否能通过装饰器( @decorator)形式使用只有一个要求:decorator 必须是一个“可被调用(callable)的对象。
对于这个 callable 对象,我们最熟悉的就是函数了。
除函数之外,类也可以是 callable 对象,只要实现了__call__ 函数(上面几个盒子已经接触过了),还有比较少人使用的偏函数也是 callable 对象。
接下来就来说说,如何使用 类和偏函数结合实现一个与众不同的装饰器。
如下所示,DelayFunc 是一个实现了 __call__ 的类,delay 返回一个偏函数,在这里 delay 就可以做为一个装饰器。(以下代码摘自 Python工匠:使用装饰器的小技巧)
import time import functools class DelayFunc: def __init__(self, duration, func): self.duration = duration self.func = func def __call__(self, *args, **kwargs): print(f'Wait for {self.duration} seconds...') time.sleep(self.duration) return self.func(*args, **kwargs) def eager_call(self, *args, **kwargs): print('Call without delay') return self.func(*args, **kwargs) def delay(duration): """ 装饰器:推迟某个函数的执行。 同时提供 .eager_call 方法立即执行 """ # 此处为了避免定义额外函数, # 直接使用 functools.partial 帮助构造 DelayFunc 实例 return functools.partial(DelayFunc, duration)
我们的业务函数很简单,就是相加
@delay(duration=2) def add(a, b): return a+b
来看一下执行过程
> add # 可见 add 变成了 Delay 的实例 <__main__.DelayFunc object at 0x107bd0be0> > > add(3,5) # 直接调用实例,进入 __call__ Wait for 2 seconds... 8 > > add.func # 实现实例方法 <function add at 0x107bef1e0>
08. 如何写能装饰类的装饰器?
用 Python 写单例模式的时候,常用的有三种写法。其中一种,是用装饰器来实现的。
以下便是我自己写的装饰器版的单例写法。
instances = {} def singleton(cls): def get_instance(*args, **kw): cls_name = cls.__name__ print('===== 1 ====') if not cls_name in instances: print('===== 2 ====') instance = cls(*args, **kw) instances[cls_name] = instance return instances[cls_name] return get_instance @singleton class User: _instance = None def __init__(self, name): print('===== 3 ====') self.name = name
可以看到我们用singleton 这个装饰函数来装饰 User 这个类。装饰器用在类上,并不是很常见,但只要熟悉装饰器的实现过程,就不难以实现对类的装饰。在上面这个例子中,装饰器就只是实现对类实例的生成的控制而已。
其实例化的过程,你可以参考我这里的调试过程,加以理解。
09. wraps 装饰器有啥用?
在 functools 标准库中有提供一个 wraps 装饰器,你应该也经常见过,那他有啥用呢?
先来看一个例子
def wrapper(func): def inner_function(): pass return inner_function @wrapper def wrapped(): pass print(wrapped.__name__) #inner_function
为什么会这样子?不是应该返回 func 吗?
这也不难理解,因为上边执行func 和下边 decorator(func) 是等价的,所以上面 func.__name__ 是等价于下面decorator(func).__name__ 的,那当然名字是 inner_function
def wrapper(func): def inner_function(): pass return inner_function def wrapped(): pass print(wrapper(wrapped).__name__) #inner_function
那如何避免这种情况的产生?方法是使用 functools .wraps 装饰器,它的作用就是将 被修饰的函数(wrapped) 的一些属性值赋值给 修饰器函数(wrapper) ,最终让属性的显示更符合我们的直觉。
from functools import wraps def wrapper(func): @wraps(func) def inner_function(): pass return inner_function @wrapper def wrapped(): pass print(wrapped.__name__) # wrapped
准确点说,wraps 其实是一个偏函数对象(partial),源码如下
def wraps(wrapped, assigned = WRAPPER_ASSIGNMENTS, updated = WRAPPER_UPDATES): return partial(update_wrapper, wrapped=wrapped, assigned=assigned, updated=updated)
可以看到wraps其实就是调用了一个函数update_wrapper,知道原理后,我们改写上面的代码,在不使用 wraps的情况下,也可以让 wrapped.__name__ 打印出 wrapped,代码如下:
from functools import update_wrapper WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__doc__', '__annotations__') def wrapper(func): def inner_function(): pass update_wrapper(inner_function, func, assigned=WRAPPER_ASSIGNMENTS) return inner_function @wrapper def wrapped(): pass print(wrapped.__name__)
10. 内置装饰器:property
以上,我们介绍的都是自定义的装饰器。
其实Python语言本身也有一些装饰器。比如property这个内建装饰器,我们再熟悉不过了。
它通常存在于类中,可以将一个函数定义成一个属性,属性的值就是该函数return的内容。
通常我们给实例绑定属性是这样的
class Student(object): def __init__(self, name, age=None): self.name = name self.age = age # 实例化 XiaoMing = Student("小明") # 添加属性 XiaoMing.age=25 # 查询属性 XiaoMing.age # 删除属性 del XiaoMing.age
但是稍有经验的开发人员,一下就可以看出,这样直接把属性暴露出去,虽然写起来很简单,但是并不能对属性的值做合法性限制。为了实现这个功能,我们可以这样写。
class Student(object): def __init__(self, name): self.name = name self.name = None def set_age(self, age): if not isinstance(age, int): raise ValueError('输入不合法:年龄必须为数值!') if not 0 < age < 100: raise ValueError('输入不合法:年龄范围必须0-100') self._age=age def get_age(self): return self._age def del_age(self): self._age = None XiaoMing = Student("小明") # 添加属性 XiaoMing.set_age(25) # 查询属性 XiaoMing.get_age() # 删除属性 XiaoMing.del_age()
上面的代码设计虽然可以变量的定义,但是可以发现不管是获取还是赋值(通过函数)都和我们平时见到的不一样。
按照我们思维习惯应该是这样的。
# 赋值 XiaoMing.age = 25 # 获取 XiaoMing.age
那么这样的方式我们如何实现呢。请看下面的代码。
class Student(object): def __init__(self, name): self.name = name self.name = None @property def age(self): return self._age @age.setter def age(self, value): if not isinstance(value, int): raise ValueError('输入不合法:年龄必须为数值!') if not 0 < value < 100: raise ValueError('输入不合法:年龄范围必须0-100') self._age=value @age.deleter def age(self): del self._age XiaoMing = Student("小明") # 设置属性 XiaoMing.age = 25 # 查询属性 XiaoMing.age # 删除属性 del XiaoMing.age
用@property装饰过的函数,会将一个函数定义成一个属性,属性的值就是该函数return的内容。同时,会将这个函数变成另外一个装饰器。就像后面我们使用的@age.setter和@age.deleter。
@age.setter 使得我们可以使用XiaoMing.age = 25这样的方式直接赋值。
@age.deleter 使得我们可以使用del XiaoMing.age这样的方式来删除属性。
property 的底层实现机制是「描述符」,为此我还写过一篇文章。
这里也介绍一下吧,正好将这些看似零散的文章全部串起来。
如下,我写了一个类,里面使用了 property 将 math 变成了类实例的属性
class Student: def __init__(self, name): self.name = name @property def math(self): return self._math @math.setter def math(self, value): if 0 <= value <= 100: self._math = value else: raise ValueError("Valid value must be in [0, 100]")
为什么说 property 底层是基于描述符协议的呢?通过 PyCharm 点击进入 property 的源码,很可惜,只是一份类似文档一样的伪源码,并没有其具体的实现逻辑。
不过,从这份伪源码的魔法函数结构组成,可以大体知道其实现逻辑。
这里我自己通过模仿其函数结构,结合「描述符协议」来自己实现类 property 特性。
代码如下:
class TestProperty(object): def __init__(self, fget=None, fset=None, fdel=None, doc=None): self.fget = fget self.fset = fset self.fdel = fdel self.__doc__ = doc def __get__(self, obj, objtype=None): print("in __get__") if obj is None: return self if self.fget is None: raise AttributeError return self.fget(obj) def __set__(self, obj, value): print("in __set__") if self.fset is None: raise AttributeError self.fset(obj, value) def __delete__(self, obj): print("in __delete__") if self.fdel is None: raise AttributeError self.fdel(obj) def getter(self, fget): print("in getter") return type(self)(fget, self.fset, self.fdel, self.__doc__) def setter(self, fset): print("in setter") return type(self)(self.fget, fset, self.fdel, self.__doc__) def deleter(self, fdel): print("in deleter") return type(self)(self.fget, self.fset, fdel, self.__doc__)
然后 Student 类,我们也相应改成如下
class Student: def __init__(self, name): self.name = name # 其实只有这里改变 @TestProperty def math(self): return self._math @math.setter def math(self, value): if 0 <= value <= 100: self._math = value else: raise ValueError("Valid value must be in [0, 100]")
为了尽量让你少产生一点疑惑,我这里做两点说明:
- 使用TestProperty装饰后,math 不再是一个函数,而是TestProperty 类的一个实例。所以第二个math函数可以使用 math.setter 来装饰,本质是调用TestProperty.setter 来产生一个新的 TestProperty 实例赋值给第二个math。
- 第一个 math 和第二个 math 是两个不同 TestProperty 实例。但他们都属于同一个描述符类(TestProperty),当对 math 对于赋值时,就会进入 TestProperty.__set__,当对math 进行取值里,就会进入 TestProperty.__get__。仔细一看,其实最终访问的还是Student实例的 _math 属性。
说了这么多,还是运行一下,更加直观一点。
# 运行后,会直接打印这一行,这是在实例化 TestProperty 并赋值给第二个math in setter > > s1.math = 90 in __set__ > s1.math in __get__ 90 如对上面代码的运行原理
,有疑问的同学,请务必结合上面两点说明加以理解,那两点相当关键。
11. 其他装饰器:装饰器实战
读完并理解了上面的内容,你可以说是Python高手了。别怀疑,自信点,因为很多人都不知道装饰器有这么多用法呢。
在小明看来,使用装饰器,可以达到如下目的:
- 使代码可读性更高,逼格更高;
- 代码结构更加清晰,代码冗余度更低;
刚好小明在最近也有一个场景,可以用装饰器很好的实现,暂且放上来看看。
这是一个实现控制函数运行超时的装饰器。如果超时,则会抛出超时异常。
有兴趣的可以看看。
import signal class TimeoutException(Exception): def __init__(self, error='Timeout waiting for response from Cloud'): Exception.__init__(self, error) def timeout_limit(timeout_time): def wraps(func): def handler(signum, frame): raise TimeoutException() def deco(*args, **kwargs): signal.signal(signal.SIGALRM, handler) signal.alarm(timeout_time) func(*args, **kwargs) signal.alarm(0) return deco return wraps
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
python,装饰器
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]