帝王谷资源网 Design By www.wdxyy.com

一个继承nn.module的model它包含一个叫做children()的函数,这个函数可以用来提取出model每一层的网络结构,在此基础上进行修改即可,修改方法如下(去除后两层):

resnet_layer = nn.Sequential(*list(model.children())[:-2])

那么,接下来就可以构建我们的网络了:

class Net(nn.Module):
  def __init__(self , model):
    super(Net, self).__init__()
    #取掉model的后两层
    self.resnet_layer = nn.Sequential(*list(model.children())[:-2])
    
    self.transion_layer = nn.ConvTranspose2d(2048, 2048, kernel_size=14, stride=3)
    self.pool_layer = nn.MaxPool2d(32) 
    self.Linear_layer = nn.Linear(2048, 8)
    
  def forward(self, x):
    x = self.resnet_layer(x)
 
    x = self.transion_layer(x)
 
    x = self.pool_layer(x)
 
    x = x.view(x.size(0), -1) 
 
    x = self.Linear_layer(x)
    
    return x

最后,构建一个对象,并加载resnet预训练的参数就可以啦~

resnet = models.resnet50(pretrained=True)
model = Net(resnet)

以上这篇pytorch 更改预训练模型网络结构的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
pytorch,预训练,模型,网络结构

帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com