帝王谷资源网 Design By www.wdxyy.com
本文源码基于版本1.0,交互界面基于0.4.1
import torch
按照指定轴上的坐标进行过滤
index_select()
沿着某tensor的一个轴dim筛选若干个坐标
> x = torch.randn(3, 4) # 目标矩阵 > x tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], [-0.4664, 0.2647, -0.1228, -1.1068], [-1.1734, -0.6571, 0.7230, -0.6004]]) > indices = torch.tensor([0, 2]) # 在轴上筛选坐标 > torch.index_select(x, dim=0, indices) # 指定筛选对象、轴、筛选坐标 tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], [-1.1734, -0.6571, 0.7230, -0.6004]]) > torch.index_select(x, dim=1, indices) tensor([[ 0.1427, -0.5414], [-0.4664, -0.1228], [-1.1734, 0.7230]])
where()
用于将两个broadcastable的tensor组合成新的tensor,类似于c++中的三元操作符“"htmlcode">
> x = torch.randn(3, 2) > y = torch.ones(3, 2) > torch.where(x > 0, x, y) tensor([[1.4013, 1.0000], [1.0000, 0.9267], [1.0000, 0.4302]]) > x tensor([[ 1.4013, -0.9960], [-0.3715, 0.9267], [-0.7163, 0.4302]])
指定条件返回01-tensor
> x = torch.arange(5) > x tensor([0, 1, 2, 3, 4]) > torch.gt(x,1) # 大于 tensor([0, 0, 1, 1, 1], dtype=torch.uint8) > x>1 # 大于 tensor([0, 0, 1, 1, 1], dtype=torch.uint8) > torch.ne(x,1) # 不等于 tensor([1, 0, 1, 1, 1], dtype=torch.uint8) > x!=1 # 不等于 tensor([1, 0, 1, 1, 1], dtype=torch.uint8) > torch.lt(x,3) # 小于 tensor([1, 1, 1, 0, 0], dtype=torch.uint8) > x<3 # 小于 tensor([1, 1, 1, 0, 0], dtype=torch.uint8) > torch.eq(x,3) # 等于 tensor([0, 0, 0, 1, 0], dtype=torch.uint8) > x==3 # 等于 tensor([0, 0, 0, 1, 0], dtype=torch.uint8)
返回索引
> x = torch.arange(5) > x # 1维 tensor([0, 1, 2, 3, 4]) > torch.nonzero(x) tensor([[1], [2], [3], [4]]) > x = torch.Tensor([[0.6, 0.0, 0.0, 0.0],[0.0, 0.4, 0.0, 0.0],[0.0, 0.0, 1.2, 0.0],[0.0, 0.0, 0.0,-0.4]]) > x # 2维 tensor([[ 0.6000, 0.0000, 0.0000, 0.0000], [ 0.0000, 0.4000, 0.0000, 0.0000], [ 0.0000, 0.0000, 1.2000, 0.0000], [ 0.0000, 0.0000, 0.0000, -0.4000]]) > torch.nonzero(x) tensor([[0, 0], [1, 1], [2, 2], [3, 3]])
借助nonzero()我们可以返回符合某一条件的index(https://stackoverflow.com/questions/47863001/how-pytorch-tensor-get-the-index-of-specific-value)
> x=torch.arange(12).view(3,4) > x tensor([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) > (x>4).nonzero() tensor([[1, 1], [1, 2], [1, 3], [2, 0], [2, 1], [2, 2], [2, 3]])
以上这篇在PyTorch中Tensor的查找和筛选例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com
暂无评论...
更新日志
2025年01月10日
2025年01月10日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]