帝王谷资源网 Design By www.wdxyy.com
在很多神经网络中,往往会出现多个层共享一个权重的情况,pytorch可以快速地处理权重共享问题。
例子1:
class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv_weight = nn.Parameter(torch.randn(3, 3, 5, 5)) def forward(self, x): x = nn.functional.conv2d(x, self.conv_weight, bias=None, stride=1, padding=2, dilation=1, groups=1) x = nn.functional.conv2d(x, self.conv_weight.transpose(2, 3).contiguous(), bias=None, stride=1, padding=0, dilation=1, groups=1) return x
上边这段程序定义了两个卷积层,这两个卷积层共享一个权重conv_weight,第一个卷积层的权重是conv_weight本身,第二个卷积层是conv_weight的转置。注意在gpu上运行时,transpose()后边必须加上.contiguous()使转置操作连续化,否则会报错。
例子2:
class LinearNet(nn.Module): def __init__(self): super(LinearNet, self).__init__() self.linear_weight = nn.Parameter(torch.randn(3, 3)) def forward(self, x): x = nn.functional.linear(x, self.linear_weight) x = nn.functional.linear(x, self.linear_weight.t()) return x
这个网络实现了一个双层感知器,权重同样是一个parameter的本身及其转置。
例子3:
class LinearNet2(nn.Module): def __init__(self): super(LinearNet2, self).__init__() self.w = nn.Parameter(torch.FloatTensor([[1.1,0,0], [0,1,0], [0,0,1]])) def forward(self, x): x = x.mm(self.w) x = x.mm(self.w.t()) return x
这个方法直接用mm函数将x与w相乘,与上边的网络效果相同。
以上这篇pytorch 共享参数的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
pytorch,共享,参数
帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com
暂无评论...
更新日志
2025年01月10日
2025年01月10日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]