帝王谷资源网 Design By www.wdxyy.com
实现SQL Server 原生数据从XML生成JSON数据的实例代码
SQL Server 是关系数据库,查询结果通常都是数据集,但是在一些特殊需求下,我们需要XML数据,最近这些年,JSON作为WebAPI常用的交换数据格式,那么数据库如何生成JSON数据呢?今天就写了一个DEMO.
1.创建表及测试数据
SET NOCOUNT ON IF OBJECT_ID('STATS') IS NOT NULL DROP TABLE STATS IF OBJECT_ID('STATIONS') IS NOT NULL DROP TABLE STATIONS IF OBJECT_ID('OPERATORS') IS NOT NULL DROP TABLE OPERATORS IF OBJECT_ID('REVIEWS') IS NOT NULL DROP TABLE REVIEWS -- Create and populate table with Station CREATE TABLE STATIONS(ID INTEGER PRIMARY KEY, CITY NVARCHAR(20), STATE CHAR(2), LAT_N REAL, LONG_W REAL); INSERT INTO STATIONS VALUES (13, 'Phoenix', 'AZ', 33, 112); INSERT INTO STATIONS VALUES (44, 'Denver', 'CO', 40, 105); INSERT INTO STATIONS VALUES (66, 'Caribou', 'ME', 47, 68); -- Create and populate table with Operators CREATE TABLE OPERATORS(ID INTEGER PRIMARY KEY, NAME NVARCHAR(20), SURNAME NVARCHAR(20)); INSERT INTO OPERATORS VALUES (50, 'John "The Fox"', 'Brown'); INSERT INTO OPERATORS VALUES (51, 'Paul', 'Smith'); INSERT INTO OPERATORS VALUES (52, 'Michael', 'Williams'); -- Create and populate table with normalized temperature and precipitation data CREATE TABLE STATS ( STATION_ID INTEGER REFERENCES STATIONS(ID), MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12), TEMP_F REAL CHECK (TEMP_F BETWEEN -80 AND 150), RAIN_I REAL CHECK (RAIN_I BETWEEN 0 AND 100), PRIMARY KEY (STATION_ID, MONTH)); INSERT INTO STATS VALUES (13, 1, 57.4, 0.31); INSERT INTO STATS VALUES (13, 7, 91.7, 5.15); INSERT INTO STATS VALUES (44, 1, 27.3, 0.18); INSERT INTO STATS VALUES (44, 7, 74.8, 2.11); INSERT INTO STATS VALUES (66, 1, 6.7, 2.10); INSERT INTO STATS VALUES (66, 7, 65.8, 4.52); -- Create and populate table with Review CREATE TABLE REVIEWS(STATION_ID INTEGER,STAT_MONTH INTEGER,OPERATOR_ID INTEGER) insert into REVIEWS VALUES (13,1,50) insert into REVIEWS VALUES (13,7,50) insert into REVIEWS VALUES (44,7,51) insert into REVIEWS VALUES (44,7,52) insert into REVIEWS VALUES (44,7,50) insert into REVIEWS VALUES (66,1,51) insert into REVIEWS VALUES (66,7,51)
2.查询结果集
select STATIONS.ID as ID, STATIONS.CITY as City, STATIONS.STATE as State, STATIONS.LAT_N as LatN, STATIONS.LONG_W as LongW, STATS.MONTH as Month, STATS.RAIN_I as Rain, STATS.TEMP_F as Temp, OPERATORS.NAME as Name, OPERATORS.SURNAME as Surname from stations inner join stats on stats.STATION_ID=STATIONS.ID left join reviews on reviews.STATION_ID=stations.id and reviews.STAT_MONTH=STATS.[MONTH] left join OPERATORS on OPERATORS.ID=reviews.OPERATOR_ID
结果:
2.查询xml数据
select stations.*, (select stats.*, (select OPERATORS.* from OPERATORS inner join reviews on OPERATORS.ID=reviews.OPERATOR_ID where reviews.STATION_ID=STATS.STATION_ID and reviews.STAT_MONTH=STATS.MONTH for xml path('operator'),type ) operators from STATS where STATS.STATION_ID=stations.ID for xml path('stat'),type ) stats from stations for xml path('station'),type
结果:
<station> <ID>13</ID> <CITY>Phoenix</CITY> <STATE>AZ</STATE> <LAT_N>3.3000000e+001</LAT_N> <LONG_W>1.1200000e+002</LONG_W> <stats> <stat> <STATION_ID>13</STATION_ID> <MONTH>1</MONTH> <TEMP_F>5.7400002e+001</TEMP_F> <RAIN_I>3.1000000e-001</RAIN_I> <operators> <operator> <ID>50</ID> <NAME>John "The Fox"</NAME> <SURNAME>Brown</SURNAME> </operator> </operators> </stat> <stat> <STATION_ID>13</STATION_ID> <MONTH>7</MONTH> <TEMP_F>9.1699997e+001</TEMP_F> <RAIN_I>5.1500001e+000</RAIN_I> <operators> <operator> <ID>50</ID> <NAME>John "The Fox"</NAME> <SURNAME>Brown</SURNAME> </operator> </operators> </stat> </stats> </station> <station> <ID>44</ID> <CITY>Denver</CITY> <STATE>CO</STATE> <LAT_N>4.0000000e+001</LAT_N> <LONG_W>1.0500000e+002</LONG_W> <stats> <stat> <STATION_ID>44</STATION_ID> <MONTH>1</MONTH> <TEMP_F>2.7299999e+001</TEMP_F> <RAIN_I>1.8000001e-001</RAIN_I> </stat> <stat> <STATION_ID>44</STATION_ID> <MONTH>7</MONTH> <TEMP_F>7.4800003e+001</TEMP_F> <RAIN_I>2.1099999e+000</RAIN_I> <operators> <operator> <ID>51</ID> <NAME>Paul</NAME> <SURNAME>Smith</SURNAME> </operator> <operator> <ID>52</ID> <NAME>Michael</NAME> <SURNAME>Williams</SURNAME> </operator> <operator> <ID>50</ID> <NAME>John "The Fox"</NAME> <SURNAME>Brown</SURNAME> </operator> </operators> </stat> </stats> </station> <station> <ID>66</ID> <CITY>Caribou</CITY> <STATE>ME</STATE> <LAT_N>4.7000000e+001</LAT_N> <LONG_W>6.8000000e+001</LONG_W> <stats> <stat> <STATION_ID>66</STATION_ID> <MONTH>1</MONTH> <TEMP_F>6.6999998e+000</TEMP_F> <RAIN_I>2.0999999e+000</RAIN_I> <operators> <operator> <ID>51</ID> <NAME>Paul</NAME> <SURNAME>Smith</SURNAME> </operator> </operators> </stat> <stat> <STATION_ID>66</STATION_ID> <MONTH>7</MONTH> <TEMP_F>6.5800003e+001</TEMP_F> <RAIN_I>4.5200000e+000</RAIN_I> <operators> <operator> <ID>51</ID> <NAME>Paul</NAME> <SURNAME>Smith</SURNAME> </operator> </operators> </stat> </stats> </station>
3.如何生成JSON数据
1)创建辅助函数
CREATE FUNCTION [dbo].[qfn_XmlToJson](@XmlData xml) RETURNS nvarchar(max) AS BEGIN declare @m nvarchar(max) SELECT @m='['+Stuff ( (SELECT theline from (SELECT ','+' {'+Stuff ( (SELECT ',"'+coalesce(b.c.value('local-name(.)', 'NVARCHAR(255)'),'')+'":'+ case when b.c.value('count(*)','int')=0 then dbo.[qfn_JsonEscape](b.c.value('text()[1]','NVARCHAR(MAX)')) else dbo.qfn_XmlToJson(b.c.query('*')) end from x.a.nodes('*') b(c) for xml path(''),TYPE).value('(./text())[1]','NVARCHAR(MAX)') ,1,1,'')+'}' from @XmlData.nodes('/*') x(a) ) JSON(theLine) for xml path(''),TYPE).value('.','NVARCHAR(MAX)') ,1,1,'')+']' return @m END
CREATE FUNCTION [dbo].[qfn_JsonEscape](@value nvarchar(max) ) returns nvarchar(max) as begin if (@value is null) return 'null' if (TRY_PARSE( @value as float) is not null) return @value set @value=replace(@value,'\','\\') set @value=replace(@value,'"','\"') return '"'+@value+'"' end
3)查询sql
select dbo.qfn_XmlToJson ( ( select stations.ID,stations.CITY,stations.STATE,stations.LAT_N,stations.LONG_W , (select stats.*, (select OPERATORS.* from OPERATORS inner join reviews on OPERATORS.ID=reviews.OPERATOR_ID where reviews.STATION_ID=STATS.STATION_ID and reviews.STAT_MONTH=STATS.MONTH for xml path('operator'),type ) operators from STATS where STATS.STATION_ID=stations.ID for xml path('stat'),type ) stats from stations for xml path('stations'),type ) )
结果:
[ {"ID":13,"CITY":"Phoenix","STATE":"AZ","LAT_N":3.3000000e+001,"LONG_W" :1.1200000e+002,"stats":[ {"STATION_ID":13,"MONTH":1,"TEMP_F":5.7400002e+001," RAIN_I":3.1000000e-001,"operators":[ {"ID":50,"NAME":"John \"The Fox\"","SURNAME":"Brown"}]}, {"STATION_ID":13,"MONTH":7,"TEMP_F":9.1699997e+001,"RAIN_I":5.1500001e+000,"operators": [ {"ID":50,"NAME":"John \"The Fox\"","SURNAME":"Brown"}]}]}, {"ID":44,"CITY":"Denver", "STATE":"CO","LAT_N":4.0000000e+001,"LONG_W":1.0500000e+002,"stats":[ {"STATION_ID":44, "MONTH":1,"TEMP_F":2.7299999e+001,"RAIN_I":1.8000001e-001}, {"STATION_ID":44,"MONTH":7, "TEMP_F":7.4800003e+001,"RAIN_I":2.1099999e+000,"operators":[ {"ID":51,"NAME":"Paul", "SURNAME":"Smith"}, {"ID":52,"NAME":"Michael","SURNAME":"Williams"}, {"ID":50,"NAME" :"John \"The Fox\"","SURNAME":"Brown"}]}]}, {"ID":66,"CITY":"Caribou","STATE":"ME","LAT_N": 4.7000000e+001,"LONG_W":6.8000000e+001,"stats":[ {"STATION_ID":66,"MONTH":1,"TEMP _F":6.6999998e+000,"RAIN_I":2.0999999e+000,"operators":[ {"ID":51,"NAME":"Paul"," SURNAME":"Smith"}]}, {"STATION_ID":66,"MONTH":7,"TEMP_F":6.5800003e+001,"RAIN_I": 4.5200000e+000,"operators":[ {"ID":51,"NAME":"Paul","SURNAME":"Smith"}]}]}]
总结:
JSON作为灵活的Web通信交换架构,如果把配置数据存放在数据库中,直接获取JSON,那配置就会非常简单了,也能够大量减轻应用服务器的压力!
感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!
帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2024年12月28日
2024年12月28日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]