帝王谷资源网 Design By www.wdxyy.com
这里的分表逻辑是根据t_group表的user_name组的个数来分的。
因为这种情况单独user_name字段上的索引就属于烂索引。起不了啥名明显的效果。
1、试验PROCEDURE.
DELIMITER $$
DROP PROCEDURE `t_girl`.`sp_split_table`$$
CREATE PROCEDURE `t_girl`.`sp_split_table`()
BEGIN
declare done int default 0;
declare v_user_name varchar(20) default '';
declare v_table_name varchar(64) default '';
-- Get all users' name.
declare cur1 cursor for select user_name from t_group group by user_name;
-- Deal with error or warnings.
declare continue handler for 1329 set done = 1;
-- Open cursor.
open cur1;
while done <> 1
do
fetch cur1 into v_user_name;
if not done then
-- Get table name.
set v_table_name = concat('t_group_',v_user_name);
-- Create new extra table.
set @stmt = concat('create table ',v_table_name,' like t_group');
prepare s1 from @stmt;
execute s1;
drop prepare s1;
-- Load data into it.
set @stmt = concat('insert into ',v_table_name,' select * from t_group where user_name = ''',v_user_name,'''');
prepare s1 from @stmt;
execute s1;
drop prepare s1;
end if;
end while;
-- Close cursor.
close cur1;
-- Free variable from memory.
set @stmt = NULL;
END$$
DELIMITER ;
2、试验表。
我们用一个有一千万条记录的表来做测试。
mysql> select count(*) from t_group;
+----------+
| count(*) |
+----------+
| 10388608 |
+----------+
1 row in set (0.00 sec)
表结构。
mysql> desc t_group;
+-------------+------------------+------+-----+-------------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+------------------+------+-----+-------------------+----------------+
| id | int(10) unsigned | NO | PRI | NULL | auto_increment |
| money | decimal(10,2) | NO | | | |
| user_name | varchar(20) | NO | MUL | | |
| create_time | timestamp | NO | | CURRENT_TIMESTAMP | |
+-------------+------------------+------+-----+-------------------+----------------+
4 rows in set (0.00 sec)
索引情况。
mysql> show index from t_group;
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
| t_group | 0 | PRIMARY | 1 | id | A | 10388608 | NULL | NULL | | BTREE | |
| t_group | 1 | idx_user_name | 1 | user_name | A | 8 | NULL | NULL | | BTREE | |
| t_group | 1 | idx_combination1 | 1 | user_name | A | 8 | NULL | NULL | | BTREE | |
| t_group | 1 | idx_combination1 | 2 | money | A | 3776 | NULL | NULL | | BTREE | |
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
4 rows in set (0.00 sec)
PS:
idx_combination1 这个索引是必须的,因为要对user_name来GROUP BY。此时属于松散索引扫描!当然完了后你可以干掉她。
idx_user_name 这个索引是为了加快单独执行constant这种类型的查询。
我们要根据用户名来分表。
mysql> select user_name from t_group where 1 group by user_name;
+-----------+
| user_name |
+-----------+
| david |
| leo |
| livia |
| lucy |
| sarah |
| simon |
| sony |
| sunny |
+-----------+
8 rows in set (0.00 sec)
所以结果表应该是这样的。
mysql> show tables like 't_group_%';
+------------------------------+
| Tables_in_t_girl (t_group_%) |
+------------------------------+
| t_group_david |
| t_group_leo |
| t_group_livia |
| t_group_lucy |
| t_group_sarah |
| t_group_simon |
| t_group_sony |
| t_group_sunny |
+------------------------------+
8 rows in set (0.00 sec)
3、对比结果。
mysql> select count(*) from t_group where user_name = 'david';
+----------+
| count(*) |
+----------+
| 1298576 |
+----------+
1 row in set (1.71 sec)
执行了将近2秒。
mysql> select count(*) from t_group_david;
+----------+
| count(*) |
+----------+
| 1298576 |
+----------+
1 row in set (0.00 sec)
几乎是瞬间的。
mysql> select count(*) from t_group where user_name <> 'david';
+----------+
| count(*) |
+----------+
| 9090032 |
+----------+
1 row in set (9.26 sec)
执行了将近10秒,可以想象,这个是实际的项目中是不能忍受的。
mysql> select (select count(*) from t_group) - (select count(*) from t_group_david) as total;
+---------+
| total |
+---------+
| 9090032 |
+---------+
1 row in set (0.00 sec)
几乎是瞬间的。
我们来看看聚集函数。
对于原表的操作。
mysql> select min(money),max(money) from t_group where user_name = 'david';
+------------+------------+
| min(money) | max(money) |
+------------+------------+
| -6.41 | 500.59 |
+------------+------------+
1 row in set (0.00 sec)
最小,最大值都是FULL INDEX SCAN。所以是瞬间的。
mysql> select sum(money),avg(money) from t_group where user_name = 'david';
+--------------+------------+
| sum(money) | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (2.15 sec)
其他聚集函数的结果就不是FULL INDEX SCAN了。耗时2.15秒。
对于小表的操作。
mysql> select min(money),max(money) from t_group_david;
+------------+------------+
| min(money) | max(money) |
+------------+------------+
| -6.41 | 500.59 |
+------------+------------+
1 row in set (1.50 sec)
最大最小值完全是FULL TABLE SCAN,耗时1.50秒,不划算。以此看来。
mysql> select sum(money),avg(money) from t_group_david;
+--------------+------------+
| sum(money) | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (1.68 sec)
取得这两个结果也是花了快2秒,快了一点。
我们来看看这个小表的结构。
mysql> desc t_group_david;
+-------------+------------------+------+-----+-------------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+------------------+------+-----+-------------------+----------------+
| id | int(10) unsigned | NO | PRI | NULL | auto_increment |
| money | decimal(10,2) | NO | | | |
| user_name | varchar(20) | NO | MUL | | |
| create_time | timestamp | NO | | CURRENT_TIMESTAMP | |
+-------------+------------------+------+-----+-------------------+----------------+
4 rows in set (0.00 sec)
明显的user_name属性是多余的。那么就干掉它。
mysql> alter table t_group_david drop user_name;
Query OK, 1298576 rows affected (7.58 sec)
Records: 1298576 Duplicates: 0 Warnings: 0
现在来重新对小表运行查询
mysql> select min(money),max(money) from t_group_david;
+------------+------------+
| min(money) | max(money) |
+------------+------------+
| -6.41 | 500.59 |
+------------+------------+
1 row in set (0.00 sec)
此时是瞬间的。
mysql> select sum(money),avg(money) from t_group_david;
+--------------+------------+
| sum(money) | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (0.94 sec)
这次算是控制在一秒以内了。
mysql> Aborted
小总结一下:分出的小表的属性尽量越少越好。大胆的去干吧。
因为这种情况单独user_name字段上的索引就属于烂索引。起不了啥名明显的效果。
1、试验PROCEDURE.
DELIMITER $$
DROP PROCEDURE `t_girl`.`sp_split_table`$$
CREATE PROCEDURE `t_girl`.`sp_split_table`()
BEGIN
declare done int default 0;
declare v_user_name varchar(20) default '';
declare v_table_name varchar(64) default '';
-- Get all users' name.
declare cur1 cursor for select user_name from t_group group by user_name;
-- Deal with error or warnings.
declare continue handler for 1329 set done = 1;
-- Open cursor.
open cur1;
while done <> 1
do
fetch cur1 into v_user_name;
if not done then
-- Get table name.
set v_table_name = concat('t_group_',v_user_name);
-- Create new extra table.
set @stmt = concat('create table ',v_table_name,' like t_group');
prepare s1 from @stmt;
execute s1;
drop prepare s1;
-- Load data into it.
set @stmt = concat('insert into ',v_table_name,' select * from t_group where user_name = ''',v_user_name,'''');
prepare s1 from @stmt;
execute s1;
drop prepare s1;
end if;
end while;
-- Close cursor.
close cur1;
-- Free variable from memory.
set @stmt = NULL;
END$$
DELIMITER ;
2、试验表。
我们用一个有一千万条记录的表来做测试。
mysql> select count(*) from t_group;
+----------+
| count(*) |
+----------+
| 10388608 |
+----------+
1 row in set (0.00 sec)
表结构。
mysql> desc t_group;
+-------------+------------------+------+-----+-------------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+------------------+------+-----+-------------------+----------------+
| id | int(10) unsigned | NO | PRI | NULL | auto_increment |
| money | decimal(10,2) | NO | | | |
| user_name | varchar(20) | NO | MUL | | |
| create_time | timestamp | NO | | CURRENT_TIMESTAMP | |
+-------------+------------------+------+-----+-------------------+----------------+
4 rows in set (0.00 sec)
索引情况。
mysql> show index from t_group;
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
| t_group | 0 | PRIMARY | 1 | id | A | 10388608 | NULL | NULL | | BTREE | |
| t_group | 1 | idx_user_name | 1 | user_name | A | 8 | NULL | NULL | | BTREE | |
| t_group | 1 | idx_combination1 | 1 | user_name | A | 8 | NULL | NULL | | BTREE | |
| t_group | 1 | idx_combination1 | 2 | money | A | 3776 | NULL | NULL | | BTREE | |
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
4 rows in set (0.00 sec)
PS:
idx_combination1 这个索引是必须的,因为要对user_name来GROUP BY。此时属于松散索引扫描!当然完了后你可以干掉她。
idx_user_name 这个索引是为了加快单独执行constant这种类型的查询。
我们要根据用户名来分表。
mysql> select user_name from t_group where 1 group by user_name;
+-----------+
| user_name |
+-----------+
| david |
| leo |
| livia |
| lucy |
| sarah |
| simon |
| sony |
| sunny |
+-----------+
8 rows in set (0.00 sec)
所以结果表应该是这样的。
mysql> show tables like 't_group_%';
+------------------------------+
| Tables_in_t_girl (t_group_%) |
+------------------------------+
| t_group_david |
| t_group_leo |
| t_group_livia |
| t_group_lucy |
| t_group_sarah |
| t_group_simon |
| t_group_sony |
| t_group_sunny |
+------------------------------+
8 rows in set (0.00 sec)
3、对比结果。
mysql> select count(*) from t_group where user_name = 'david';
+----------+
| count(*) |
+----------+
| 1298576 |
+----------+
1 row in set (1.71 sec)
执行了将近2秒。
mysql> select count(*) from t_group_david;
+----------+
| count(*) |
+----------+
| 1298576 |
+----------+
1 row in set (0.00 sec)
几乎是瞬间的。
mysql> select count(*) from t_group where user_name <> 'david';
+----------+
| count(*) |
+----------+
| 9090032 |
+----------+
1 row in set (9.26 sec)
执行了将近10秒,可以想象,这个是实际的项目中是不能忍受的。
mysql> select (select count(*) from t_group) - (select count(*) from t_group_david) as total;
+---------+
| total |
+---------+
| 9090032 |
+---------+
1 row in set (0.00 sec)
几乎是瞬间的。
我们来看看聚集函数。
对于原表的操作。
mysql> select min(money),max(money) from t_group where user_name = 'david';
+------------+------------+
| min(money) | max(money) |
+------------+------------+
| -6.41 | 500.59 |
+------------+------------+
1 row in set (0.00 sec)
最小,最大值都是FULL INDEX SCAN。所以是瞬间的。
mysql> select sum(money),avg(money) from t_group where user_name = 'david';
+--------------+------------+
| sum(money) | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (2.15 sec)
其他聚集函数的结果就不是FULL INDEX SCAN了。耗时2.15秒。
对于小表的操作。
mysql> select min(money),max(money) from t_group_david;
+------------+------------+
| min(money) | max(money) |
+------------+------------+
| -6.41 | 500.59 |
+------------+------------+
1 row in set (1.50 sec)
最大最小值完全是FULL TABLE SCAN,耗时1.50秒,不划算。以此看来。
mysql> select sum(money),avg(money) from t_group_david;
+--------------+------------+
| sum(money) | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (1.68 sec)
取得这两个结果也是花了快2秒,快了一点。
我们来看看这个小表的结构。
mysql> desc t_group_david;
+-------------+------------------+------+-----+-------------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+------------------+------+-----+-------------------+----------------+
| id | int(10) unsigned | NO | PRI | NULL | auto_increment |
| money | decimal(10,2) | NO | | | |
| user_name | varchar(20) | NO | MUL | | |
| create_time | timestamp | NO | | CURRENT_TIMESTAMP | |
+-------------+------------------+------+-----+-------------------+----------------+
4 rows in set (0.00 sec)
明显的user_name属性是多余的。那么就干掉它。
mysql> alter table t_group_david drop user_name;
Query OK, 1298576 rows affected (7.58 sec)
Records: 1298576 Duplicates: 0 Warnings: 0
现在来重新对小表运行查询
mysql> select min(money),max(money) from t_group_david;
+------------+------------+
| min(money) | max(money) |
+------------+------------+
| -6.41 | 500.59 |
+------------+------------+
1 row in set (0.00 sec)
此时是瞬间的。
mysql> select sum(money),avg(money) from t_group_david;
+--------------+------------+
| sum(money) | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (0.94 sec)
这次算是控制在一秒以内了。
mysql> Aborted
小总结一下:分出的小表的属性尽量越少越好。大胆的去干吧。
标签:
mysql,优化,分表
帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年01月04日
2025年01月04日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]