帝王谷资源网 Design By www.wdxyy.com

本文实例讲述了Python tensorflow实现mnist手写数字识别。分享给大家供大家参考,具体如下:

非卷积实现

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
data_path = 'F:\CNN\data\mnist'
mnist_data = input_data.read_data_sets(data_path,one_hot=True) #offline dataset
x_data = tf.placeholder("float32", [None, 784]) # None means we can import any number of images
weight = tf.Variable(tf.ones([784,10]))
bias = tf.Variable(tf.ones([10]))
Y_model = tf.nn.softmax(tf.matmul(x_data ,weight) + bias)
#Y_model = tf.nn.sigmoid(tf.matmul(x_data ,weight) + bias)
'''
weight1 = tf.Variable(tf.ones([784,256]))
bias1 = tf.Variable(tf.ones([256]))
Y_model1 = tf.nn.softmax(tf.matmul(x_data ,weight1) + bias1)
weight1 = tf.Variable(tf.ones([256,10]))
bias1 = tf.Variable(tf.ones([10]))
Y_model = tf.nn.softmax(tf.matmul(Y_model1 ,weight1) + bias1)
'''
y_data = tf.placeholder("float32", [None, 10])
loss = tf.reduce_sum(tf.pow((y_data - Y_model), 2 ))#92%-93%
#loss = tf.reduce_sum(tf.square(y_data - Y_model)) #90%-91%
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # reset values to wrong
for i in range(100000):
  batch_xs, batch_ys = mnist_data.train.next_batch(50)
  sess.run(train, feed_dict = {x_data: batch_xs, y_data: batch_ys})
  if i%50==0:
    correct_predict = tf.equal(tf.arg_max(Y_model,1),tf.argmax(y_data,1))
    accurate = tf.reduce_mean(tf.cast(correct_predict,"float"))
    print(sess.run(accurate,feed_dict={x_data:mnist_data.test.images,y_data:mnist_data.test.labels}))

卷积实现

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
data_path = 'F:\CNN\data\mnist'
mnist_data = input_data.read_data_sets(data_path,one_hot=True) #offline dataset
x_data = tf.placeholder("float32", [None, 784]) # None means we can import any number of images
x_image = tf.reshape(x_data, [-1,28,28,1])
w_conv = tf.Variable(tf.ones([5,5,1,32])) #weight
b_conv = tf.Variable(tf.ones([32]))    #bias
h_conv = tf.nn.relu(tf.nn.conv2d(x_image , w_conv,strides=[1,1,1,1],padding='SAME')+ b_conv)
h_pool = tf.nn.max_pool(h_conv,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
w_fc = tf.Variable(tf.ones([14*14*32,1024]))
b_fc = tf.Variable(tf.ones([1024]))
h_pool_flat = tf.reshape(h_pool,[-1,14*14*32])
h_fc = tf.nn.relu(tf.matmul(h_pool_flat,w_fc) +b_fc)
W_fc = w_fc = tf.Variable(tf.ones([1024,10]))
B_fc = tf.Variable(tf.ones([10]))
Y_model = tf.nn.softmax(tf.matmul(h_fc,W_fc) +B_fc)
y_data = tf.placeholder("float32",[None,10])
loss = -tf.reduce_sum(y_data * tf.log(Y_model))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
  batch_xs,batch_ys =mnist_data.train.next_batch(5)
  sess.run(train_step,feed_dict={x_data:batch_xs,y_data:batch_ys})
  if i%50==0:
    correct_prediction = tf.equal(tf.argmax(Y_model,1),tf.argmax(y_data,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
    print(sess.run(accuracy,feed_dict={x_data:mnist_data.test.images,y_data:mnist_data.test.labels}))

更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

标签:
Python,tensorflow,mnist,手写数字识别

帝王谷资源网 Design By www.wdxyy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
帝王谷资源网 Design By www.wdxyy.com

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。